Abstract

Real-time imaging of gas leaks was demonstrated using an IR camera employing outdoor thermal background radiation. Ammonia, ethylene and methane detection was demonstrated in the spectral region 7-13 �m. Imaging was accomplished using an optical filter and a gas-correlation cell matching the absorption band of the gas. When two gases, such as ammonia and ethylene, are absorbing in the same wavelength region it is possible to isolate one for display by using gas-correlation multispectral imaging. Results from a field test on a leaking gas tanker are presented as QuickTime movies. A detection limit of 200 ppm x meter for ammonia was accomplished in this setup when the temperature difference between the background and the gas was 18 K and the frame rate was 15 Hz.

© Optical Society of America

PDF Article

References

  • View by:
  • |

  1. T.J. Kulp, P.E. Powers and R. Kennedy, "Remote imaging of controlled gas releases using active and passive infrared imaging systems," in Infrared Technology and Applications XXIII, B.F. Andresen, M. Strojnik Scholl, eds., Proc. SPIE 3061, 269-278 (1997).
  2. S.-�. Ljungberg, T.J. Kulp and T.G. McRae, "State-of the-art and future plans for IR imaging of gaseous fugitive emission," in Thermosense XIX, R.N. Wurzbach, D.D. Burleigh, eds., Proc. SPIE 3056, 2-19 (1997).
  3. C. Allander, P. Carlsson, B. Hall�n, B. Ljungqvist and O. Norlander, "Thermocamera a macroscopic method for the study of pollution with nitrous oxide in operating theatres," Acta Anaesth. Scand. 25, 21-24 (1981).
  4. T.G. McRae and T.J. Kulp, "Backscatter absorption gas imaging: a new technique for gas visualization," Appl. Opt. 32, 4037-4050 (1993).
  5. J. Sandsten, H. Edner and S. Svanberg, "Gas imaging by infrared gas-correlation spectrometry," Opt. Lett. 21, 1945-1947 (1996), http://www-atom.fysik.lth.se/JonasSandsten/GasCorrelationImaging.htm.
  6. T.V. Ward and H.H. Zwick, "Gas cell correlation spectrometer: GASPEC," Appl. Opt. 14, 2896-2904 (1975).
  7. H.S. Lee and H.H. Zwick, "Gas filter correlation instrument for the remote sensing of gas leaks," Rev. Sci. Instr. 56, 1812-1819 (1985).
  8. H. Edner, S. Svanberg, L. Un�us and W. Wendt, "Gas-correlation lidar," Opt. Lett. 9, 493-495 (1984).
  9. P.S. Andersson, S. Mont�n and S. Svanberg, "Multi-spectral system for medical fluorescence imaging," IEEE J. Quant. Electr. QE-23, 1798-1805 (1987).
  10. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattsin, K. Yoshino, K.V. Chance, K.W. Juck, L.R. Brown, V. Nemtchechin, P. Varanasi, The HITRAN molecular spectroscopic database: 1996 edition., J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
  11. M.L. Polak, J.L. Hall and K.C. Herr, "Passive Fourier-transform infrared spectroscopy of chemical plumes: an algoritm for quantitative interpretation and real-time background removal," Appl. Opt. 34, 5406-5412 (1995).
  12. P.L. Hanst, QASoft �96, Database and quantitative analysis program for measurements of gases, Infrared Analysis Inc., Anaheim, Ca, 1996.
  13. GRAMS/32, Array basic programming language, Galactic Industries Corp.

Other (13)

T.J. Kulp, P.E. Powers and R. Kennedy, "Remote imaging of controlled gas releases using active and passive infrared imaging systems," in Infrared Technology and Applications XXIII, B.F. Andresen, M. Strojnik Scholl, eds., Proc. SPIE 3061, 269-278 (1997).

S.-�. Ljungberg, T.J. Kulp and T.G. McRae, "State-of the-art and future plans for IR imaging of gaseous fugitive emission," in Thermosense XIX, R.N. Wurzbach, D.D. Burleigh, eds., Proc. SPIE 3056, 2-19 (1997).

C. Allander, P. Carlsson, B. Hall�n, B. Ljungqvist and O. Norlander, "Thermocamera a macroscopic method for the study of pollution with nitrous oxide in operating theatres," Acta Anaesth. Scand. 25, 21-24 (1981).

T.G. McRae and T.J. Kulp, "Backscatter absorption gas imaging: a new technique for gas visualization," Appl. Opt. 32, 4037-4050 (1993).

J. Sandsten, H. Edner and S. Svanberg, "Gas imaging by infrared gas-correlation spectrometry," Opt. Lett. 21, 1945-1947 (1996), http://www-atom.fysik.lth.se/JonasSandsten/GasCorrelationImaging.htm.

T.V. Ward and H.H. Zwick, "Gas cell correlation spectrometer: GASPEC," Appl. Opt. 14, 2896-2904 (1975).

H.S. Lee and H.H. Zwick, "Gas filter correlation instrument for the remote sensing of gas leaks," Rev. Sci. Instr. 56, 1812-1819 (1985).

H. Edner, S. Svanberg, L. Un�us and W. Wendt, "Gas-correlation lidar," Opt. Lett. 9, 493-495 (1984).

P.S. Andersson, S. Mont�n and S. Svanberg, "Multi-spectral system for medical fluorescence imaging," IEEE J. Quant. Electr. QE-23, 1798-1805 (1987).

L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattsin, K. Yoshino, K.V. Chance, K.W. Juck, L.R. Brown, V. Nemtchechin, P. Varanasi, The HITRAN molecular spectroscopic database: 1996 edition., J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).

M.L. Polak, J.L. Hall and K.C. Herr, "Passive Fourier-transform infrared spectroscopy of chemical plumes: an algoritm for quantitative interpretation and real-time background removal," Appl. Opt. 34, 5406-5412 (1995).

P.L. Hanst, QASoft �96, Database and quantitative analysis program for measurements of gases, Infrared Analysis Inc., Anaheim, Ca, 1996.

GRAMS/32, Array basic programming language, Galactic Industries Corp.

Supplementary Material (5)

» Media 1: MOV (2087 KB)     
» Media 2: MOV (1689 KB)     
» Media 3: MOV (1850 KB)     
» Media 4: MOV (1657 KB)     
» Media 5: MOV (1904 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics