Abstract

We demonstrate for the first time two-photon induced holographic recording at an arbitrary point in three dimensional photopolymeric cube by overlapping two coherent pulses from a 200 femtosecond Ti: Sapphire tunable laser operating at 710 nm. Spatial overlap is achieved by a novel pupil division method. The polymer material is made of epoxy host, which is fully polymerized and filled with liquid photopolymerisable formulation comprising acrylate type monomer and two-photon photoinitiator. Measured diffraction efficiency is measured to be 3.5%.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Holographic polymer dispersed liquid crystal enhanced by introducing urethane trimethacrylate

Nahid Hosein Nataj, Ezeddin Mohajerani, Hossein Jashnsaz, and Ali Jannesari
Appl. Opt. 51(6) 697-703 (2012)

Optical characterization and applications of a dual-cure photopolymerizable system

Reyna A. Duarte-Quiroga, Sergio Calixto, and Daniel J. Lougnot
Appl. Opt. 42(8) 1417-1425 (2003)

Preparation, characterization, and heat resistance studies of a holographic photopolymer based on SU-8 epoxy resin

Yasushi Takamatsu, David Dunmeyer, Edwin L. Thomas, and Cardinal Warde
Opt. Lett. 33(1) 7-9 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. S. Dvornikov and P.M. Rentzepis, Opt. Commun.119, 341 (1995).
    [Crossref]
  2. A. Toriumi, S. Kawata, and M. Gu, “Reflection confocal microscope readout system for 3D photochromic optical data storage,” Opt. Lett. 23, pp 1924–6 (1998).
    [Crossref]
  3. D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett.25, 155 (1974).
    [Crossref]
  4. G. C. Bjorklund, Chr. Brauchle, D. M. Burland, and D. C. Alvarez, “Two-photon holography with continuous-wave lasers,” Opt. Lett. 6, 159–61 (1980).
    [Crossref]
  5. Chr. Brauchle, Urs P. Wild, D. M. Burland, G. C. Bjorklund, and D. C. Alvarez, “Two-photon holographic recording with continuous-wave lasers in the 750-1100nm range,” Opt. Lett. 7, 177–9 (1982).
    [Crossref] [PubMed]
  6. B.H. Cumpston, J.W. Perry, and S. Marder et al, “New Photopolymers based on two-photon absorbing chromophores and application to three-dimensional microfabrication and optical storage,” Mat. Res. Soc. Symp. Proc. 488, 217–25 (1998).
    [Crossref]
  7. Cornelius Diamond, “O-MOS: Optically Written Micro-optical Systems,” Ph.D. Thesis, University of California, San Diego, exp. Pub. January 2000.
  8. Epoxy Technology, Inc. Fully cured refractive index was measured to be 1.54.
  9. A.S. Kewitsch and A. Yariv, Opt. Lett.21, 24 (1996).
    [Crossref] [PubMed]

1998 (2)

A. Toriumi, S. Kawata, and M. Gu, “Reflection confocal microscope readout system for 3D photochromic optical data storage,” Opt. Lett. 23, pp 1924–6 (1998).
[Crossref]

B.H. Cumpston, J.W. Perry, and S. Marder et al, “New Photopolymers based on two-photon absorbing chromophores and application to three-dimensional microfabrication and optical storage,” Mat. Res. Soc. Symp. Proc. 488, 217–25 (1998).
[Crossref]

1982 (1)

1980 (1)

Alvarez, D. C.

Bjorklund, G. C.

Brauchle, Chr.

Burland, D. M.

Cumpston, B.H.

B.H. Cumpston, J.W. Perry, and S. Marder et al, “New Photopolymers based on two-photon absorbing chromophores and application to three-dimensional microfabrication and optical storage,” Mat. Res. Soc. Symp. Proc. 488, 217–25 (1998).
[Crossref]

Dvornikov, A. S.

A. S. Dvornikov and P.M. Rentzepis, Opt. Commun.119, 341 (1995).
[Crossref]

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett.25, 155 (1974).
[Crossref]

Gu, M.

Kawata, S.

Kewitsch, A.S.

A.S. Kewitsch and A. Yariv, Opt. Lett.21, 24 (1996).
[Crossref] [PubMed]

Marder, S.

B.H. Cumpston, J.W. Perry, and S. Marder et al, “New Photopolymers based on two-photon absorbing chromophores and application to three-dimensional microfabrication and optical storage,” Mat. Res. Soc. Symp. Proc. 488, 217–25 (1998).
[Crossref]

Perry, J.W.

B.H. Cumpston, J.W. Perry, and S. Marder et al, “New Photopolymers based on two-photon absorbing chromophores and application to three-dimensional microfabrication and optical storage,” Mat. Res. Soc. Symp. Proc. 488, 217–25 (1998).
[Crossref]

Rentzepis, P.M.

A. S. Dvornikov and P.M. Rentzepis, Opt. Commun.119, 341 (1995).
[Crossref]

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett.25, 155 (1974).
[Crossref]

Toriumi, A.

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett.25, 155 (1974).
[Crossref]

Wild, Urs P.

Yariv, A.

A.S. Kewitsch and A. Yariv, Opt. Lett.21, 24 (1996).
[Crossref] [PubMed]

Mat. Res. Soc. Symp. Proc. (1)

B.H. Cumpston, J.W. Perry, and S. Marder et al, “New Photopolymers based on two-photon absorbing chromophores and application to three-dimensional microfabrication and optical storage,” Mat. Res. Soc. Symp. Proc. 488, 217–25 (1998).
[Crossref]

Opt. Lett. (3)

Other (5)

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett.25, 155 (1974).
[Crossref]

Cornelius Diamond, “O-MOS: Optically Written Micro-optical Systems,” Ph.D. Thesis, University of California, San Diego, exp. Pub. January 2000.

Epoxy Technology, Inc. Fully cured refractive index was measured to be 1.54.

A.S. Kewitsch and A. Yariv, Opt. Lett.21, 24 (1996).
[Crossref] [PubMed]

A. S. Dvornikov and P.M. Rentzepis, Opt. Commun.119, 341 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1.
Figure 1.

Optical system for 3D two-photon holography

Figure 2.
Figure 2.

Fringes from overlap of 200 fs pulses

Figure 3.
Figure 3.

Diffraction efficiency in time for liquid sample.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ = l T cos ( tan 1 ( Δ x 2 f eff ) )

Metrics