Abstract

A continuous-wave singly-resonant optical parametric oscillator (SRO) has been implemented using a 20 mm long crystal of periodically poled KTiOPO4 (PPKTP) intracavity-pumped at room temperature within a Ti:sapphire laser. The device delivers a maximum output power of 455 mW at a non-resonant idler wavelength of 2.47 µm. The 28.5-µm grating PPKTP crystal provides SRO tuning over 1.14–1.27 µm (signal) and 2.23–2.73 µm (idler) limited by optical coating bandwidths and corresponding to a pump tuning range of 805.5–811.2 nm. Temperature tuning of the device generated signal and idler ranges of 1.18–1.26 µm and 2.29–2.57 µm, respectively, corresponding to an average tuning rate of 1.2 nm/degree (signal) and 4.5 nm/degree (idler). Ring-cavity configuration of the device resulted in generation of 115 mW of single-frequency idler output at 2.35 µm.

© 2000 Optical Society of America

Full Article  |  PDF Article
Related Articles
Intracavity continuous-wave singly resonant optical parametric oscillators

M. Ebrahimzadeh, G. A. Turnbull, T. J. Edwards, D. J. M. Stothard, I. D. Lindsay, and M. H. Dunn
J. Opt. Soc. Am. B 16(9) 1499-1511 (1999)

Continuous-wave, singly resonant, intracavity parametric oscillator

F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh
Opt. Lett. 22(2) 75-77 (1997)

Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator

P. Gross, M. E. Klein, T. Walde, K.-J. Boller, M. Auerbach, P. Wessels, and C. Fallnich
Opt. Lett. 27(6) 418-420 (2002)

References

  • View by:
  • |
  • |
  • |

  1. A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4” Opt. Lett. 23, 1739 (1998).
    [Crossref]
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators on bulk periodically poled LiNbO3” J. Opt. Soc. Am. B 12, 2102 (1995).
    [Crossref]
  3. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodacally poled LiNbO3” Opt. Lett. 21, 713 (1996).
    [Crossref] [PubMed]
  4. G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave singly-resonant intracavity optical parametric oscillator based on periodacally-poled LiNbO3,” Electron. Lett. 33, 1817 (1997).
    [Crossref]
  5. T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, “Continuous-wave singly-resonant optical parametric oscillator based on periodacally-poled RbTiOAsO4,” Opt. Lett. 23, 837 (1998).
    [Crossref]
  6. F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave singly-resonant intracavity optical parametric oscillator,” Opt. Lett. 22, 75 (1997).
    [Crossref] [PubMed]
  7. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4” Appl. Phys. Lett. 71, 3474 (1997).
    [Crossref]
  8. H. Vanherzeele, J. D. Bierein, and F. C. Zumsteg, “Index of refraction measurements and parametric generation in hydrothermally grown KTiOPO4,” Appl. Opt. 27, 3314 (1988).
    [Crossref] [PubMed]
  9. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of Potassium Titanyl Phosphate,” Opt. Lett. 18, 1208 (1993).
    [Crossref] [PubMed]
  10. K. Kato, “Temperature insensitive SHG at 0.5321 µm in KTP,” IEEE J.Q.E. QE-28, 1974–1976 (1992).
    [Crossref]

1998 (2)

1997 (3)

F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave singly-resonant intracavity optical parametric oscillator,” Opt. Lett. 22, 75 (1997).
[Crossref] [PubMed]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4” Appl. Phys. Lett. 71, 3474 (1997).
[Crossref]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave singly-resonant intracavity optical parametric oscillator based on periodacally-poled LiNbO3,” Electron. Lett. 33, 1817 (1997).
[Crossref]

1996 (1)

1995 (1)

1993 (1)

1992 (1)

K. Kato, “Temperature insensitive SHG at 0.5321 µm in KTP,” IEEE J.Q.E. QE-28, 1974–1976 (1992).
[Crossref]

1988 (1)

Alexander, J. I.

Arie, A.

Arvidsson, G.

Bierein, J. D.

Bosenberg, W. R.

Byer, R. L.

Colville, F. G.

Drobshoff, A.

Dunn, M. H.

Ebrahimzadeh, M.

Eckardt, R. C.

Edwards, T. J.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, “Continuous-wave singly-resonant optical parametric oscillator based on periodacally-poled RbTiOAsO4,” Opt. Lett. 23, 837 (1998).
[Crossref]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave singly-resonant intracavity optical parametric oscillator based on periodacally-poled LiNbO3,” Electron. Lett. 33, 1817 (1997).
[Crossref]

Fejer, M. M.

Fukui, T.

Garashi, A.

Karlsson, H.

Kato, K.

K. Kato, “Temperature insensitive SHG at 0.5321 µm in KTP,” IEEE J.Q.E. QE-28, 1974–1976 (1992).
[Crossref]

Kubota, S.

Laurell, F.

Masuda, H.

Myers, L. E.

Pierce, J. W.

Rosenman, G.

Skliar, A.

Turnbull, G. A.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, “Continuous-wave singly-resonant optical parametric oscillator based on periodacally-poled RbTiOAsO4,” Opt. Lett. 23, 837 (1998).
[Crossref]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave singly-resonant intracavity optical parametric oscillator based on periodacally-poled LiNbO3,” Electron. Lett. 33, 1817 (1997).
[Crossref]

Vanherzeele, H.

Wiechmann, W.

Zumsteg, F. C.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4” Appl. Phys. Lett. 71, 3474 (1997).
[Crossref]

Electron. Lett. (1)

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave singly-resonant intracavity optical parametric oscillator based on periodacally-poled LiNbO3,” Electron. Lett. 33, 1817 (1997).
[Crossref]

IEEE J.Q.E. (1)

K. Kato, “Temperature insensitive SHG at 0.5321 µm in KTP,” IEEE J.Q.E. QE-28, 1974–1976 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental PPKTP SRO configuration.

Fig. 2.
Fig. 2.

SRO down-conversion performance.

Fig. 3.
Fig. 3.

Pump tuning of SRO.

Fig. 4.
Fig. 4.

Temperature tuning of SRO.

Fig. 5.
Fig. 5.

Ring-cavity configuration of PPKTP SRO.

Fig. 6.
Fig. 6.

Simultaneous pump and signal output spectrum from which SLM operation of the idler can be inferred.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P th SRO = P in P th TIS ,

Metrics