Abstract

We have developed an instrument for non-invasive optical imaging of the human brain that produces on-line images with a temporal resolution of 160 ms. The imaged quantities are the temporal changes in cerebral oxy-hemoglobin and deoxy-hemoglobin concentrations. We report real-time videos of the arterial pulsation and motor activation recorded on a 4×9 cm2 area of the cerebral cortex in a healthy human subject. This approach to optical brain imaging is a powerful tool for the investigation of the spatial and temporal features of the optical signals collected on the brain.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-Infrared Spectroscopic Localization of Intracranial Hematomas,” J. Neurosurg. 79, 43–47 (1993).
    [CrossRef] [PubMed]
  2. Y. Hoshi, S. Mizukami, and M. Tamura, “Dynamic features of hemodynamic and metabolic changes in the human brain during all-night sleep revealed by near-infrared spectroscopy,” Brain Research 652, 257–262 (1994).
    [CrossRef] [PubMed]
  3. Y. Hoshi and M. Tamura, “Fluctuations in the cerebral oxygenation state during the resting period in functional mapping studies of the human brain,” Med. Biol. Eng. Comput. 35, 328–330 (1997).
    [CrossRef] [PubMed]
  4. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes During Activation of Brain Function in Human Adults,” Neurosci. Lett. 154, 101–104 (1993).
    [CrossRef] [PubMed]
  5. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
    [CrossRef] [PubMed]
  6. G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, “Rapid Changes of Optical Parameters in the Human Brain During a Tapping Task,” J. Cognitive Neuroscience 7, 446–456 (1995).
    [CrossRef]
  7. H. Obrig, C. Hirth, J. G. Junge-Hülsing, C. Döge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J Appl. Physiol. 81, 1174–1183 (1996).
    [PubMed]
  8. B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3774 (1993).
    [CrossRef] [PubMed]
  9. Y. Hoshi and M. Tamura, “Detection of Dynamic Changes in Cerebral Oxygenation Coupled to Neuronal Function During Mental Work in Man,” Neurosci. Lett. 150, 5–8 (1993).
    [CrossRef] [PubMed]
  10. T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J Cereb. Blood Flow Metab. 13, 516–520 (1993).
    [CrossRef] [PubMed]
  11. J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional Changes in Cerebral Haemodynamics as a Result of a Visual Stimulus Measured by Near Infrared Spectroscopy,” Proc. Roy. Soc. London B 261, 351–356 (1995).
    [CrossRef]
  12. H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).
  13. A. M. Siegel, J. J. A. Marota, and D. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4, 287–298 (1999). http://epubs.osa.org/opticsexpress/tocv4n8.htm
    [CrossRef] [PubMed]
  14. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998). http://epubs.osa.org/opticsexpress/framestocv2n10.htm
    [CrossRef] [PubMed]
  15. R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
    [CrossRef] [PubMed]
  16. S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
    [CrossRef] [PubMed]
  17. S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
    [CrossRef] [PubMed]
  18. J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
    [CrossRef] [PubMed]
  19. Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
    [PubMed]
  20. C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
    [PubMed]
  21. H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-order brain function analysis by trans-cranical dynamic near-infrared spectroscopy imaging,’ J. Biomed. Opt. 4, 403–413 (1999).
    [CrossRef] [PubMed]
  22. S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, and M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Express 4, 308–314 (1999). http://epubs.osa.org/opticsexpress/tocv4n8.htm
    [CrossRef] [PubMed]
  23. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-Domain Multichannel Optical Detector for non-Invasive Tissue Spectroscopy and Oximetry,” Opt. Eng. 34, 32–42 (1995).
    [CrossRef]
  24. M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
    [CrossRef]
  25. M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294 (1988).
    [CrossRef] [PubMed]
  26. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlenght measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.. 40, 295–304 (1995).
    [CrossRef] [PubMed]
  27. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
    [CrossRef] [PubMed]
  28. C. Hirth, H. Obrig, J. Valdueza, U. Dirnagl, and A. Villringer, “Simultaneous assessment of cerebral oxygenation and hemodynamics during a motor task,” in Oxygen Transport to Tissue XVIII, edited by E. M. Nemoto and J. C. LaManna (Plenum Press, New York, NY, 1997), pp. 461–469.
    [CrossRef]
  29. V. Toronov, M. A. Franceschini, M. Filiaci, M. Wolf, S. Fantini, and E. Gratton, “Near-Infrared Study of Fluctuations in Cerebral Hemodynamics During Rest and Motor Stimulation: Spatial Mapping and Temporal Analysis,” Med. Phys. (submitted).
  30. M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
    [CrossRef] [PubMed]
  31. G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of Gray Matter: Noninvasive Optical Images of Human Brain Responses During Visual Stimulation,” Psychophysiology 32, 505–509 (1995).
    [CrossRef] [PubMed]
  32. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a Superficial Layer in the Quantitative Spectroscopic Study of Strongly Scattering Media,” Appl. Opt. 37, 7447–7458 (1998).
    [CrossRef]
  33. M. A. Franceschini, E. Gratton, and S. Fantini, “Non-Invasive Optical Method to Measure Tissue and Arterial Saturation: an Application to Absolute Pulse Oximetry of the Brain,” Opt. Lett. 24 (12), 829–831 (1999).
    [CrossRef]

1999 (5)

1998 (5)

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a Superficial Layer in the Quantitative Spectroscopic Study of Strongly Scattering Media,” Appl. Opt. 37, 7447–7458 (1998).
[CrossRef]

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998). http://epubs.osa.org/opticsexpress/framestocv2n10.htm
[CrossRef] [PubMed]

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[CrossRef] [PubMed]

1997 (5)

H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).

Y. Hoshi and M. Tamura, “Fluctuations in the cerebral oxygenation state during the resting period in functional mapping studies of the human brain,” Med. Biol. Eng. Comput. 35, 328–330 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
[CrossRef]

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

1996 (2)

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

H. Obrig, C. Hirth, J. G. Junge-Hülsing, C. Döge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J Appl. Physiol. 81, 1174–1183 (1996).
[PubMed]

1995 (6)

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional Changes in Cerebral Haemodynamics as a Result of a Visual Stimulus Measured by Near Infrared Spectroscopy,” Proc. Roy. Soc. London B 261, 351–356 (1995).
[CrossRef]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, “Rapid Changes of Optical Parameters in the Human Brain During a Tapping Task,” J. Cognitive Neuroscience 7, 446–456 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-Domain Multichannel Optical Detector for non-Invasive Tissue Spectroscopy and Oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of Gray Matter: Noninvasive Optical Images of Human Brain Responses During Visual Stimulation,” Psychophysiology 32, 505–509 (1995).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlenght measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.. 40, 295–304 (1995).
[CrossRef] [PubMed]

1994 (1)

Y. Hoshi, S. Mizukami, and M. Tamura, “Dynamic features of hemodynamic and metabolic changes in the human brain during all-night sleep revealed by near-infrared spectroscopy,” Brain Research 652, 257–262 (1994).
[CrossRef] [PubMed]

1993 (5)

S. P. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-Infrared Spectroscopic Localization of Intracranial Hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes During Activation of Brain Function in Human Adults,” Neurosci. Lett. 154, 101–104 (1993).
[CrossRef] [PubMed]

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3774 (1993).
[CrossRef] [PubMed]

Y. Hoshi and M. Tamura, “Detection of Dynamic Changes in Cerebral Oxygenation Coupled to Neuronal Function During Mental Work in Man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J Cereb. Blood Flow Metab. 13, 516–520 (1993).
[CrossRef] [PubMed]

1991 (1)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

1988 (1)

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294 (1988).
[CrossRef] [PubMed]

Anday, E.

Barbieri, B.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-Domain Multichannel Optical Detector for non-Invasive Tissue Spectroscopy and Oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Benaron, D. A.

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[CrossRef] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[CrossRef] [PubMed]

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

Bernarding, J.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Boas, D.

Chance, B.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998). http://epubs.osa.org/opticsexpress/framestocv2n10.htm
[CrossRef] [PubMed]

S. P. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-Infrared Spectroscopic Localization of Intracranial Hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3774 (1993).
[CrossRef] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Cheong, W.-F.

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[CrossRef] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[CrossRef] [PubMed]

Cho, E.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of Gray Matter: Noninvasive Optical Images of Human Brain Responses During Visual Stimulation,” Psychophysiology 32, 505–509 (1995).
[CrossRef] [PubMed]

Clemence, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlenght measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.. 40, 295–304 (1995).
[CrossRef] [PubMed]

Cope, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlenght measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.. 40, 295–304 (1995).
[CrossRef] [PubMed]

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294 (1988).
[CrossRef] [PubMed]

Corballis, P. M.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, “Rapid Changes of Optical Parameters in the Human Brain During a Tapping Task,” J. Cognitive Neuroscience 7, 446–456 (1995).
[CrossRef]

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of Gray Matter: Noninvasive Optical Images of Human Brain Responses During Visual Stimulation,” Psychophysiology 32, 505–509 (1995).
[CrossRef] [PubMed]

Danen, R. M.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Delpy, D. T.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional Changes in Cerebral Haemodynamics as a Result of a Visual Stimulus Measured by Near Infrared Spectroscopy,” Proc. Roy. Soc. London B 261, 351–356 (1995).
[CrossRef]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlenght measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.. 40, 295–304 (1995).
[CrossRef] [PubMed]

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294 (1988).
[CrossRef] [PubMed]

Dirnagl, U.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

H. Obrig, C. Hirth, J. G. Junge-Hülsing, C. Döge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J Appl. Physiol. 81, 1174–1183 (1996).
[PubMed]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes During Activation of Brain Function in Human Adults,” Neurosci. Lett. 154, 101–104 (1993).
[CrossRef] [PubMed]

C. Hirth, H. Obrig, J. Valdueza, U. Dirnagl, and A. Villringer, “Simultaneous assessment of cerebral oxygenation and hemodynamics during a motor task,” in Oxygen Transport to Tissue XVIII, edited by E. M. Nemoto and J. C. LaManna (Plenum Press, New York, NY, 1997), pp. 461–469.
[CrossRef]

Döge, C.

H. Obrig, C. Hirth, J. G. Junge-Hülsing, C. Döge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J Appl. Physiol. 81, 1174–1183 (1996).
[PubMed]

Donzelli, G. P.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
[CrossRef]

Duckworth, J. L.

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[CrossRef] [PubMed]

Duncan, A.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlenght measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.. 40, 295–304 (1995).
[CrossRef] [PubMed]

Eberle, R.

H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).

Elwell, C. E.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional Changes in Cerebral Haemodynamics as a Result of a Visual Stimulus Measured by Near Infrared Spectroscopy,” Proc. Roy. Soc. London B 261, 351–356 (1995).
[CrossRef]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlenght measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.. 40, 295–304 (1995).
[CrossRef] [PubMed]

Fabiani, M.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of Gray Matter: Noninvasive Optical Images of Human Brain Responses During Visual Stimulation,” Psychophysiology 32, 505–509 (1995).
[CrossRef] [PubMed]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, “Rapid Changes of Optical Parameters in the Human Brain During a Tapping Task,” J. Cognitive Neuroscience 7, 446–456 (1995).
[CrossRef]

Fantini, S.

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, and M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Express 4, 308–314 (1999). http://epubs.osa.org/opticsexpress/tocv4n8.htm
[CrossRef] [PubMed]

M. A. Franceschini, E. Gratton, and S. Fantini, “Non-Invasive Optical Method to Measure Tissue and Arterial Saturation: an Application to Absolute Pulse Oximetry of the Brain,” Opt. Lett. 24 (12), 829–831 (1999).
[CrossRef]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a Superficial Layer in the Quantitative Spectroscopic Study of Strongly Scattering Media,” Appl. Opt. 37, 7447–7458 (1998).
[CrossRef]

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-Domain Multichannel Optical Detector for non-Invasive Tissue Spectroscopy and Oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, “Rapid Changes of Optical Parameters in the Human Brain During a Tapping Task,” J. Cognitive Neuroscience 7, 446–456 (1995).
[CrossRef]

V. Toronov, M. A. Franceschini, M. Filiaci, M. Wolf, S. Fantini, and E. Gratton, “Near-Infrared Study of Fluctuations in Cerebral Hemodynamics During Rest and Motor Stimulation: Spatial Mapping and Temporal Analysis,” Med. Phys. (submitted).

Filiaci, M.

V. Toronov, M. A. Franceschini, M. Filiaci, M. Wolf, S. Fantini, and E. Gratton, “Near-Infrared Study of Fluctuations in Cerebral Hemodynamics During Rest and Motor Stimulation: Spatial Mapping and Temporal Analysis,” Med. Phys. (submitted).

Franceschini, M. A.

M. A. Franceschini, E. Gratton, and S. Fantini, “Non-Invasive Optical Method to Measure Tissue and Arterial Saturation: an Application to Absolute Pulse Oximetry of the Brain,” Opt. Lett. 24 (12), 829–831 (1999).
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, and M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Express 4, 308–314 (1999). http://epubs.osa.org/opticsexpress/tocv4n8.htm
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a Superficial Layer in the Quantitative Spectroscopic Study of Strongly Scattering Media,” Appl. Opt. 37, 7447–7458 (1998).
[CrossRef]

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-Domain Multichannel Optical Detector for non-Invasive Tissue Spectroscopy and Oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, “Rapid Changes of Optical Parameters in the Human Brain During a Tapping Task,” J. Cognitive Neuroscience 7, 446–456 (1995).
[CrossRef]

V. Toronov, M. A. Franceschini, M. Filiaci, M. Wolf, S. Fantini, and E. Gratton, “Near-Infrared Study of Fluctuations in Cerebral Hemodynamics During Rest and Motor Stimulation: Spatial Mapping and Temporal Analysis,” Med. Phys. (submitted).

Friedman, D.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, “Rapid Changes of Optical Parameters in the Human Brain During a Tapping Task,” J. Cognitive Neuroscience 7, 446–456 (1995).
[CrossRef]

Gopinath, S. P.

S. P. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-Infrared Spectroscopic Localization of Intracranial Hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

Gratton, E.

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, and M. R. Stankovic, “Non-invasive optical mapping of the piglet brain in real time,” Opt. Express 4, 308–314 (1999). http://epubs.osa.org/opticsexpress/tocv4n8.htm
[CrossRef] [PubMed]

M. A. Franceschini, E. Gratton, and S. Fantini, “Non-Invasive Optical Method to Measure Tissue and Arterial Saturation: an Application to Absolute Pulse Oximetry of the Brain,” Opt. Lett. 24 (12), 829–831 (1999).
[CrossRef]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a Superficial Layer in the Quantitative Spectroscopic Study of Strongly Scattering Media,” Appl. Opt. 37, 7447–7458 (1998).
[CrossRef]

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-Domain Multichannel Optical Detector for non-Invasive Tissue Spectroscopy and Oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, “Rapid Changes of Optical Parameters in the Human Brain During a Tapping Task,” J. Cognitive Neuroscience 7, 446–456 (1995).
[CrossRef]

V. Toronov, M. A. Franceschini, M. Filiaci, M. Wolf, S. Fantini, and E. Gratton, “Near-Infrared Study of Fluctuations in Cerebral Hemodynamics During Rest and Motor Stimulation: Spatial Mapping and Temporal Analysis,” Med. Phys. (submitted).

Gratton, G.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of Gray Matter: Noninvasive Optical Images of Human Brain Responses During Visual Stimulation,” Psychophysiology 32, 505–509 (1995).
[CrossRef] [PubMed]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, “Rapid Changes of Optical Parameters in the Human Brain During a Tapping Task,” J. Cognitive Neuroscience 7, 446–456 (1995).
[CrossRef]

Grossman, R. G.

S. P. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-Infrared Spectroscopic Localization of Intracranial Hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

Haida, M.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

Heekeren, H. R.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).

Hintz, S. R.

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[CrossRef] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[CrossRef] [PubMed]

Hirth, C.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

H. Obrig, C. Hirth, J. G. Junge-Hülsing, C. Döge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J Appl. Physiol. 81, 1174–1183 (1996).
[PubMed]

C. Hirth, H. Obrig, J. Valdueza, U. Dirnagl, and A. Villringer, “Simultaneous assessment of cerebral oxygenation and hemodynamics during a motor task,” in Oxygen Transport to Tissue XVIII, edited by E. M. Nemoto and J. C. LaManna (Plenum Press, New York, NY, 1997), pp. 461–469.
[CrossRef]

Hock, C.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes During Activation of Brain Function in Human Adults,” Neurosci. Lett. 154, 101–104 (1993).
[CrossRef] [PubMed]

Hong, L.

Hood, D. C.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of Gray Matter: Noninvasive Optical Images of Human Brain Responses During Visual Stimulation,” Psychophysiology 32, 505–509 (1995).
[CrossRef] [PubMed]

Horst, S.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi and M. Tamura, “Fluctuations in the cerebral oxygenation state during the resting period in functional mapping studies of the human brain,” Med. Biol. Eng. Comput. 35, 328–330 (1997).
[CrossRef] [PubMed]

Y. Hoshi, S. Mizukami, and M. Tamura, “Dynamic features of hemodynamic and metabolic changes in the human brain during all-night sleep revealed by near-infrared spectroscopy,” Brain Research 652, 257–262 (1994).
[CrossRef] [PubMed]

Y. Hoshi and M. Tamura, “Detection of Dynamic Changes in Cerebral Oxygenation Coupled to Neuronal Function During Mental Work in Man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

Hueber, D.

Itagaki, H.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-order brain function analysis by trans-cranical dynamic near-infrared spectroscopy imaging,’ J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Ito, Y.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-order brain function analysis by trans-cranical dynamic near-infrared spectroscopy imaging,’ J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Itoh, Y.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

Junge-Hülsing, J. G.

H. Obrig, C. Hirth, J. G. Junge-Hülsing, C. Döge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J Appl. Physiol. 81, 1174–1183 (1996).
[PubMed]

Kamei, A.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J Cereb. Blood Flow Metab. 13, 516–520 (1993).
[CrossRef] [PubMed]

Kato, T.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J Cereb. Blood Flow Metab. 13, 516–520 (1993).
[CrossRef] [PubMed]

Kawaguchi, F.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

Kennan, R.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-order brain function analysis by trans-cranical dynamic near-infrared spectroscopy imaging,’ J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Khan, M. J.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional Changes in Cerebral Haemodynamics as a Result of a Visual Stimulus Measured by Near Infrared Spectroscopy,” Proc. Roy. Soc. London B 261, 351–356 (1995).
[CrossRef]

Kohl, M.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

Koizumi, H.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-order brain function analysis by trans-cranical dynamic near-infrared spectroscopy imaging,’ J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Kurth, R.

H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Li, C.

Li, X. D.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Lipton, L.

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3774 (1993).
[CrossRef] [PubMed]

Liu, F. W. H.

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[CrossRef] [PubMed]

Maier, J. S.

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a Superficial Layer in the Quantitative Spectroscopic Study of Strongly Scattering Media,” Appl. Opt. 37, 7447–7458 (1998).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-Domain Multichannel Optical Detector for non-Invasive Tissue Spectroscopy and Oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Maki, A.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-order brain function analysis by trans-cranical dynamic near-infrared spectroscopy imaging,’ J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Mantulin, W. W.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
[CrossRef]

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Marota, J. J. A.

Maulik, D.

Mayanagi, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Meek, J. H.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional Changes in Cerebral Haemodynamics as a Result of a Visual Stimulus Measured by Near Infrared Spectroscopy,” Proc. Roy. Soc. London B 261, 351–356 (1995).
[CrossRef]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlenght measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.. 40, 295–304 (1995).
[CrossRef] [PubMed]

Mizukami, S.

Y. Hoshi, S. Mizukami, and M. Tamura, “Dynamic features of hemodynamic and metabolic changes in the human brain during all-night sleep revealed by near-infrared spectroscopy,” Brain Research 652, 257–262 (1994).
[CrossRef] [PubMed]

Mühlnickl, W.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Murray, T.

Nioka, S.

Nolte, C.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

Obrig, H.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

H. Obrig, C. Hirth, J. G. Junge-Hülsing, C. Döge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J Appl. Physiol. 81, 1174–1183 (1996).
[PubMed]

C. Hirth, H. Obrig, J. Valdueza, U. Dirnagl, and A. Villringer, “Simultaneous assessment of cerebral oxygenation and hemodynamics during a motor task,” in Oxygen Transport to Tissue XVIII, edited by E. M. Nemoto and J. C. LaManna (Plenum Press, New York, NY, 1997), pp. 461–469.
[CrossRef]

Ovetsky, Y.

Ozaki, T.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J Cereb. Blood Flow Metab. 13, 516–520 (1993).
[CrossRef] [PubMed]

Paunescu, L. A.

Pidikiti, D.

Planck, J.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes During Activation of Brain Function in Human Adults,” Neurosci. Lett. 154, 101–104 (1993).
[CrossRef] [PubMed]

Pratesi, S.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
[CrossRef]

Robertson, C. S.

S. P. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-Infrared Spectroscopic Localization of Intracranial Hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

Romaya, J.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional Changes in Cerebral Haemodynamics as a Result of a Visual Stimulus Measured by Near Infrared Spectroscopy,” Proc. Roy. Soc. London B 261, 351–356 (1995).
[CrossRef]

Rosenfeld, W.

Ruben, J.

H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).

Schleinkofer, L.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes During Activation of Brain Function in Human Adults,” Neurosci. Lett. 154, 101–104 (1993).
[CrossRef] [PubMed]

Scholz, U.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Shinohara, N.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

Shinohara, Y.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

Siegel, A. M.

Spilman, S.

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

Spilman, S. D.

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[CrossRef] [PubMed]

Stankovic, M. R.

Stevenson, D. K.

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[CrossRef] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[CrossRef] [PubMed]

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

Stubblefield, P. G.

Takashima, S.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J Cereb. Blood Flow Metab. 13, 516–520 (1993).
[CrossRef] [PubMed]

Tamura, M.

Y. Hoshi and M. Tamura, “Fluctuations in the cerebral oxygenation state during the resting period in functional mapping studies of the human brain,” Med. Biol. Eng. Comput. 35, 328–330 (1997).
[CrossRef] [PubMed]

Y. Hoshi, S. Mizukami, and M. Tamura, “Dynamic features of hemodynamic and metabolic changes in the human brain during all-night sleep revealed by near-infrared spectroscopy,” Brain Research 652, 257–262 (1994).
[CrossRef] [PubMed]

Y. Hoshi and M. Tamura, “Detection of Dynamic Changes in Cerebral Oxygenation Coupled to Neuronal Function During Mental Work in Man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

Thayer, W. S.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Thiel, A.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Thomas, R.

Toronov, V.

V. Toronov, M. A. Franceschini, M. Filiaci, M. Wolf, S. Fantini, and E. Gratton, “Near-Infrared Study of Fluctuations in Cerebral Hemodynamics During Rest and Motor Stimulation: Spatial Mapping and Temporal Analysis,” Med. Phys. (submitted).

Tyszczuk, L.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlenght measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.. 40, 295–304 (1995).
[CrossRef] [PubMed]

UnAh, C.

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3774 (1993).
[CrossRef] [PubMed]

Valdueza, J.

C. Hirth, H. Obrig, J. Valdueza, U. Dirnagl, and A. Villringer, “Simultaneous assessment of cerebral oxygenation and hemodynamics during a motor task,” in Oxygen Transport to Tissue XVIII, edited by E. M. Nemoto and J. C. LaManna (Plenum Press, New York, NY, 1997), pp. 461–469.
[CrossRef]

van Houten, J. P.

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[CrossRef] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[CrossRef] [PubMed]

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

Villringer, A.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).

H. Obrig, C. Hirth, J. G. Junge-Hülsing, C. Döge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J Appl. Physiol. 81, 1174–1183 (1996).
[PubMed]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes During Activation of Brain Function in Human Adults,” Neurosci. Lett. 154, 101–104 (1993).
[CrossRef] [PubMed]

C. Hirth, H. Obrig, J. Valdueza, U. Dirnagl, and A. Villringer, “Simultaneous assessment of cerebral oxygenation and hemodynamics during a motor task,” in Oxygen Transport to Tissue XVIII, edited by E. M. Nemoto and J. C. LaManna (Plenum Press, New York, NY, 1997), pp. 461–469.
[CrossRef]

Villringer, K.

H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Walker, S. A.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-Domain Multichannel Optical Detector for non-Invasive Tissue Spectroscopy and Oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Wallace, D.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
[CrossRef]

Wang, Y.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Watanabe, E.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Wenzel, H.

H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).

Wolf, M.

V. Toronov, M. A. Franceschini, M. Filiaci, M. Wolf, S. Fantini, and E. Gratton, “Near-Infrared Study of Fluctuations in Cerebral Hemodynamics During Rest and Motor Stimulation: Spatial Mapping and Temporal Analysis,” Med. Phys. (submitted).

Wolf, T.

H. Obrig, C. Hirth, J. G. Junge-Hülsing, C. Döge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J Appl. Physiol. 81, 1174–1183 (1996).
[PubMed]

Worden, K.

Wyatt, J. S.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional Changes in Cerebral Haemodynamics as a Result of a Visual Stimulus Measured by Near Infrared Spectroscopy,” Proc. Roy. Soc. London B 261, 351–356 (1995).
[CrossRef]

Yamamoto, T.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-order brain function analysis by trans-cranical dynamic near-infrared spectroscopy imaging,’ J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

Yamashita, Y.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-order brain function analysis by trans-cranical dynamic near-infrared spectroscopy imaging,’ J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Yodh, A. G.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Zeki, S.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional Changes in Cerebral Haemodynamics as a Result of a Visual Stimulus Measured by Near Infrared Spectroscopy,” Proc. Roy. Soc. London B 261, 351–356 (1995).
[CrossRef]

Zhou, S.

Zhuang, Z.

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3774 (1993).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (2)

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Anal. Biochem. (1)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Appl. Opt. (1)

Brain Research (1)

Y. Hoshi, S. Mizukami, and M. Tamura, “Dynamic features of hemodynamic and metabolic changes in the human brain during all-night sleep revealed by near-infrared spectroscopy,” Brain Research 652, 257–262 (1994).
[CrossRef] [PubMed]

J Appl. Physiol. (1)

H. Obrig, C. Hirth, J. G. Junge-Hülsing, C. Döge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J Appl. Physiol. 81, 1174–1183 (1996).
[PubMed]

J Cereb. Blood Flow Metab. (1)

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J Cereb. Blood Flow Metab. 13, 516–520 (1993).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-order brain function analysis by trans-cranical dynamic near-infrared spectroscopy imaging,’ J. Biomed. Opt. 4, 403–413 (1999).
[CrossRef] [PubMed]

J. Cognitive Neuroscience (1)

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, “Rapid Changes of Optical Parameters in the Human Brain During a Tapping Task,” J. Cognitive Neuroscience 7, 446–456 (1995).
[CrossRef]

J. Neurosurg. (1)

S. P. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-Infrared Spectroscopic Localization of Intracranial Hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (2)

Y. Hoshi and M. Tamura, “Fluctuations in the cerebral oxygenation state during the resting period in functional mapping studies of the human brain,” Med. Biol. Eng. Comput. 35, 328–330 (1997).
[CrossRef] [PubMed]

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294 (1988).
[CrossRef] [PubMed]

Med. Phys. (1)

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Neurosci. Lett. (2)

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes During Activation of Brain Function in Human Adults,” Neurosci. Lett. 154, 101–104 (1993).
[CrossRef] [PubMed]

Y. Hoshi and M. Tamura, “Detection of Dynamic Changes in Cerebral Oxygenation Coupled to Neuronal Function During Mental Work in Man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

Opt. Eng. (1)

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-Domain Multichannel Optical Detector for non-Invasive Tissue Spectroscopy and Oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Pediatr. Res. (2)

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[CrossRef] [PubMed]

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[CrossRef] [PubMed]

Photochem. Photobiol. (2)

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol.. (1)

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlenght measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.. 40, 295–304 (1995).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, “Cognition-activated low-frequency modulation of light absorption in human brain,” Proc. Natl. Acad. Sci. USA 90, 3770–3774 (1993).
[CrossRef] [PubMed]

Proc. R Soc. Lond. B (1)

H. R. Heekeren, H. Obrig, H. Wenzel, R. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during substained visual stimulation - a near-infrared spectroscopy study,” Proc. R Soc. Lond. B 352, 743–750 (1997).

Proc. Roy. Soc. London B (1)

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional Changes in Cerebral Haemodynamics as a Result of a Visual Stimulus Measured by Near Infrared Spectroscopy,” Proc. Roy. Soc. London B 261, 351–356 (1995).
[CrossRef]

Proc. SPIE (1)

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical Study of the Skeletal Muscle During Exercise with a Second Generation Frequency-Domain Tissue Oximeter,” Proc. SPIE 2979, 807–814 (1997).
[CrossRef]

Psychophysiology (1)

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of Gray Matter: Noninvasive Optical Images of Human Brain Responses During Visual Stimulation,” Psychophysiology 32, 505–509 (1995).
[CrossRef] [PubMed]

Other (2)

C. Hirth, H. Obrig, J. Valdueza, U. Dirnagl, and A. Villringer, “Simultaneous assessment of cerebral oxygenation and hemodynamics during a motor task,” in Oxygen Transport to Tissue XVIII, edited by E. M. Nemoto and J. C. LaManna (Plenum Press, New York, NY, 1997), pp. 461–469.
[CrossRef]

V. Toronov, M. A. Franceschini, M. Filiaci, M. Wolf, S. Fantini, and E. Gratton, “Near-Infrared Study of Fluctuations in Cerebral Hemodynamics During Rest and Motor Stimulation: Spatial Mapping and Temporal Analysis,” Med. Phys. (submitted).

Supplementary Material (2)

» Media 1: GIF (848 KB)     
» Media 2: MOV (300 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Geometrical arrangement of the sixteen source optical fibers and two detector fiber bundles on the head of a human subject. Each one of the eight closed circles (numbered 1–8) represents one pair of source fibers at 758 and 830 nm. The two open circles (labeled as A and B) represent the two detector fiber bundles. The rectangle inside the head is the 4×9 cm2 imaged area. The measurement protocol involves hand-tapping with the right hand (contralateral to the imaged brain area). The 10-s tapping periods are indicated by the blue bars in the temporal diagram. The video displays the real-time evolution of the relative deoxy-hemoglobin concentration (D[Hb]) map during the hand-tapping protocol, as well as the temporal traces from two representative source-detector pairs (1A and 6B). Duration of the animated gif video: 87 s; file size: 849 kB.

Fig. 2.
Fig. 2.

Backprojection scheme used to generate the optical maps. The pixel size is 0.5×0.5 cm2 The numbers in each pixel indicate the corresponding source location, while their colors indicate the detector (red for detector A, blue for detector B). Two or three numbers in one pixel indicate a linear interpolation of the corresponding readings. If one reading has a higher weight, it is indicated in boldface.

Fig. 3.
Fig. 3.

(a) Oxy-hemoglobin optical maps of the brain over two heartbeat periods during baseline acquisition. The acquisition time is 160 ms. The traces next to each image are the pulsation readings from the pulse oximeter on a toe of the subject. (b) Real-time video of the spatial map of relative oxy-hemoglobin concentration during baseline (from t=21.5 s to t=36.5 s). The duration of the quicktime video is 15 s and the file size is 301 kB.

Fig. 4.
Fig. 4.

Maps of oxy-hemoglobin (left panels) and deoxy-hemoglobin (right panels) changes at rest (top) and at the time of maximum response during the third tapping period (bottom). The top figure is a video of Δ[HbO2] (left panel) and Δ[Hb] (right panel) during three successive rest/tapping periods. Note that the color scales for Δ[HbO2] and Δ[Hb] are inverted (in the oxy-hemoglobin map, darker means an increase in concentration, while in the deoxy-hemoglobin map it means a decrease in concentration). This is done to produce the same visual effect for the opposite behavior of the two species during motor stimulation. The quicktime video duration is 86 s and the file size is 2,257 kB.

Fig. 5.
Fig. 5.

(a) Oxy-hemoglobin and and (b) deoxy-hemoglobin concentration traces recorded with source-detector pairs 6B and 1A during the three rest/tapping periods shown in the videos of Figs. 1 and 4. The blue bars indicate the tapping periods. Panel (a) also shows the optical signal recorded by the pulse oximeter on a toe of the subject. (c) Geometrical arrangement of the optical probe with the indication of the zones probed by source-detector pairs 6B and 1A (see also Fig. 2).

Metrics