Abstract

A hollow fiber composed of a glass-tube substrate and an aluminum thin film coated upon the inside of the tube delivers F2-excimer laser light. A smooth, aluminum thin film was deposited by using metal-organic chemical vapor deposition using dimethylethylamine:alane (DMEAA) as the precursor. It was shown that the transmission loss of the fiber with a 1.0-mm inner diameter was as low as 0.5 dB/m for the fiber with 1.0-mm diameter when the bore of the fiber is pressurized with an inert gas to remove the absorption of air. When the fiber is bent at the radius of 30 cm, the additional loss was 1.6 dB.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H.G. Craighead, J. C. White, R. E. Howard, L. D. Jackel, R. E. Behringer, J. E. Sweeney and R. W. Epworth, "Contact lithography at 157 nm with an F2 excimer laser," J. Vac. Sci. & Technol. B 1, 1186-1189 (1983).
    [CrossRef]
  2. U. Stamm, I. Bragin, S. Govorkov, J. Kleinschmidt, R. Patzel, E. Slobodtchikov, K. Vogler, F. Voss and D. Basting," Excimer laser for 157 nm lithography," in Emerging Lithographic Technologies III, Yuli Vladimirsky, ed., Proc. SPIE 3676, 816-826 (1999).
  3. H. Nagai, "Applications of excimer lasers," Rev. Laser Eng. 23, 1038-1050 (1995).
    [CrossRef]
  4. P. R. Herman, K. Beckley, B. Jackson, K. Kurosawa, D. Moore, T. Yamanishi, and J. Yang, "Processing applications with the 157-nm fluorine excimer laser," in Excimer Lasers, Optics, and Applications, H Shields and P E Dyer, eds., Proc. SPIE 2992, 86-95 (1997).
  5. H. Hosono, M. Mizuguchi, L. Skuja, and T. Ogawa, "Fluorine-doped SiO2 glasses for F2 excimer laser optics: fluorine content and color-center formation," Opt. Lett. 24, 1549-1551 (1999).
    [CrossRef]
  6. V. Liberman, M. Rothschild, J. H. C. Sedlacak, R. S. Uttaro, A. Grenville, A. K. Bates and C. Van Peski, "Excimer-laser-induced degradation of fused silica and calcium fluoride for 193-nm lithographic applications," Opt. Lett. 24, 58-60 (1999).
    [CrossRef]
  7. R. S. Taylor, K. E. Leopold, R. K. Brimacombe and S. Mihailov, "Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength," Appl. Opt. 27, 3124-3134 (1988).
    [CrossRef] [PubMed]
  8. Y. Matsuura and M. Miyagi, "Flexible hollow waveguides for delivery of excimer-laser light," Opt. Lett. 23, 1226-1228 (1998).
    [CrossRef]
  9. Y. Matsuura and M. Miyagi, "Aluminum-coated hollow glass fibers for ArF-excimer laser light fabricated by metallorganic chemical-vapor deposition," Appl. Opt. 38, 2458-2462 (1999).
    [CrossRef]
  10. T. Kodas and M. Hampden-Smith, Ed., The Chemistry of Metal CVD (VCH, Weinheim, 1994).
  11. M. G. Simmonds, E. C. Phillips, J.-W. Hwang, and W. L. Gladfelter, "A stable, liquid precursor for aluminum," Chemtronics 5, 155-158 (1991).

Other (11)

H.G. Craighead, J. C. White, R. E. Howard, L. D. Jackel, R. E. Behringer, J. E. Sweeney and R. W. Epworth, "Contact lithography at 157 nm with an F2 excimer laser," J. Vac. Sci. & Technol. B 1, 1186-1189 (1983).
[CrossRef]

U. Stamm, I. Bragin, S. Govorkov, J. Kleinschmidt, R. Patzel, E. Slobodtchikov, K. Vogler, F. Voss and D. Basting," Excimer laser for 157 nm lithography," in Emerging Lithographic Technologies III, Yuli Vladimirsky, ed., Proc. SPIE 3676, 816-826 (1999).

H. Nagai, "Applications of excimer lasers," Rev. Laser Eng. 23, 1038-1050 (1995).
[CrossRef]

P. R. Herman, K. Beckley, B. Jackson, K. Kurosawa, D. Moore, T. Yamanishi, and J. Yang, "Processing applications with the 157-nm fluorine excimer laser," in Excimer Lasers, Optics, and Applications, H Shields and P E Dyer, eds., Proc. SPIE 2992, 86-95 (1997).

H. Hosono, M. Mizuguchi, L. Skuja, and T. Ogawa, "Fluorine-doped SiO2 glasses for F2 excimer laser optics: fluorine content and color-center formation," Opt. Lett. 24, 1549-1551 (1999).
[CrossRef]

V. Liberman, M. Rothschild, J. H. C. Sedlacak, R. S. Uttaro, A. Grenville, A. K. Bates and C. Van Peski, "Excimer-laser-induced degradation of fused silica and calcium fluoride for 193-nm lithographic applications," Opt. Lett. 24, 58-60 (1999).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe and S. Mihailov, "Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength," Appl. Opt. 27, 3124-3134 (1988).
[CrossRef] [PubMed]

Y. Matsuura and M. Miyagi, "Flexible hollow waveguides for delivery of excimer-laser light," Opt. Lett. 23, 1226-1228 (1998).
[CrossRef]

Y. Matsuura and M. Miyagi, "Aluminum-coated hollow glass fibers for ArF-excimer laser light fabricated by metallorganic chemical-vapor deposition," Appl. Opt. 38, 2458-2462 (1999).
[CrossRef]

T. Kodas and M. Hampden-Smith, Ed., The Chemistry of Metal CVD (VCH, Weinheim, 1994).

M. G. Simmonds, E. C. Phillips, J.-W. Hwang, and W. L. Gladfelter, "A stable, liquid precursor for aluminum," Chemtronics 5, 155-158 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Loss spectra of the aluminum-coated fibers fabricated before and after optimizing the fabrication process. The inner diameter of the fiber is 1.0 mm and the length is 1m. The fiber is excited by a Gaussian beam with a wide divergence angle of 3.7° at FWHM.

Fig. 2.
Fig. 2.

#x2022; Gas introducing attachment for hollow fibers

Fig. 3.
Fig. 3.

Transmission losses of aluminum-coated hollow fiber versus purged nitrogen pressure. The inner diameter of the fiber is 1.0 mm and the length is 1m.

Fig. 4.
Fig. 4.

Measured straight and bending losses of aluminum hollow waveguides for F2 laser light (λ=157 nm). The length of the fibers is 1 m and the bore diameters are 1 mm and 0.7 mm.

Fig. 5.
Fig. 5.

Power density profiles of (a) laser source beam, (b) output beam from a straight hollow fiber, and (c) output beam from a bent hollow fiber. The profiles are measured by using a thermal paper and burn patterns are processed by a computer software.

Metrics