Abstract

We report on a novel design of a cavity-dumped Ti:sapphire laser employing a semiconductor saturable absorber mirror (SESAM) to assure self-starting. With pump powers as low as 3.5 W, a stable operation is achieved, producing pulses of about 90 fs duration and single pulse energies of up to 34 nJ at 800 kHz dumping rate. The suppression ratios of the preceeding and consecutive pulses are better than 350:1, thus making this system an ideal excitation source for time-correlated photon counting experiments.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Kurokawa, N. Kubota and M. Nakazawa, "48 fs, 190 kW Pulse generation from a cavity dumped synchronously pumped dye laser," Opt. Commun. 68, 287-290 (1988).
    [CrossRef]
  2. A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestrie and O. Svelto, "Highly stable 60 fs pulses from a cavity dumped hybridly mode-locked dye laser," Opt. Commun. 92, 271-276 (1992).
    [CrossRef]
  3. G. Gibson, R. Klank and F. Gibson, "Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator," Opt. Lett. 21, 1055-1057 (1996).
    [CrossRef] [PubMed]
  4. M. Ramaswamy, M. Ulman, J. Paye and J.G. Fujimoto, "Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser," Opt. Lett. 18, 1822-1824 (1993).
    [CrossRef] [PubMed]
  5. M. S. Pshenichnikov, W. P. de Boeij and D. A. Wiersma, "Generation of 1 -fs. 5-MW pulses from a cavity-dumped Ti:sapphire laser," Opt. Lett. 19, 572-574 (1994).
    [CrossRef] [PubMed]
  6. N. Flanders, D. Arnett and F. Scherer, "Optical Pump-Terahertz Probe Spectroscopy Utilizing a Cavity-Dumped Oscilaator-Driven Terahertz Spectrometer," IEEE J. Sel. Top. Quantum Electron. 4, 353 - 359 (1998).
    [CrossRef]
  7. Y. Liau, A. Unterreiner, D. Arnett and N. Scherer, "Femtosecond-pulse cavity -dumped solid-state oscillator design and application to ultrafast microscopy," Appl. Opt. 38, 7386-7392 (1999).
    [CrossRef]
  8. E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga and K. Yoshihara,"Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser," Opt. Lett. 21, 354- 356 (1996).
    [CrossRef] [PubMed]
  9. S. Cho, B. Bouma, E. Ippen and J. Fujimoto, "Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999).
    [CrossRef]
  10. U. Keller, D. Miller, G. Boyd, T. Chiu, J. Ferguson and M. Asorn,"Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresosnant semiconductor Fabry-Perot saturable absorber," Opt. Lett. 17, 505-507 (1992).
    [CrossRef] [PubMed]
  11. U. Keller, K. Weingarten, F. Kartner, D.Knopf, B.Braun, I.Jung, R. Fluck,C.Honninger, N. Matuschek, J. aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
    [CrossRef]
  12. I. Jung, F.Kartner, M. Matuschek, D. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, T. Tschudi and U. Keller, "Semiconductor saturable absorber mirrors supporting sub-10-fs pulses," Appl. Phys. B 65, 137-150 (1997).
    [CrossRef]
  13. W. Schu�lbauer, Ph.D. dissertation, Institut fur Physikalische und Theoretische Chemie, Universitat Erlangen-Nurnberg, Germany, 1994.
  14. a) F. Kartner and U. Keller, "Stabilization of solitonlike pulses with slow saturable absorber," Opt. Lett. 20 16-18 (1995), b) I. Jung, F. Kartner, L. Brovelli, M. Kamp and U. Keller, "Experimental verfication of soliton modelocking using onl a slow saturable absorber," Opt. Lett. 20, 1892-1895 (1995), c) F. Kartner, I. Jung and U. Keller, "Soliton modelocking with saturable absorber," IEEE J. Sel. Top. Quantum Electron. 2, 540-556, (1996).
    [CrossRef] [PubMed]
  15. F. Kartner, J. aus der Au and U. Keller, "Slow and Fast Saturable Absorbers for Modelocking of Solid State Lasers - What's The Difference?," IEEE J. Sel. Top. Quantum Electron. 4, 159-168, (1998).
  16. B.E. Lemoff and C.P. Barty,"Cubic-phase-free dispersion compensation in solid-state ultrashort-pulse lasers," Opt. Lett. 18, 57-60 (1993).
    [CrossRef] [PubMed]

Other

K. Kurokawa, N. Kubota and M. Nakazawa, "48 fs, 190 kW Pulse generation from a cavity dumped synchronously pumped dye laser," Opt. Commun. 68, 287-290 (1988).
[CrossRef]

A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestrie and O. Svelto, "Highly stable 60 fs pulses from a cavity dumped hybridly mode-locked dye laser," Opt. Commun. 92, 271-276 (1992).
[CrossRef]

G. Gibson, R. Klank and F. Gibson, "Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator," Opt. Lett. 21, 1055-1057 (1996).
[CrossRef] [PubMed]

M. Ramaswamy, M. Ulman, J. Paye and J.G. Fujimoto, "Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser," Opt. Lett. 18, 1822-1824 (1993).
[CrossRef] [PubMed]

M. S. Pshenichnikov, W. P. de Boeij and D. A. Wiersma, "Generation of 1 -fs. 5-MW pulses from a cavity-dumped Ti:sapphire laser," Opt. Lett. 19, 572-574 (1994).
[CrossRef] [PubMed]

N. Flanders, D. Arnett and F. Scherer, "Optical Pump-Terahertz Probe Spectroscopy Utilizing a Cavity-Dumped Oscilaator-Driven Terahertz Spectrometer," IEEE J. Sel. Top. Quantum Electron. 4, 353 - 359 (1998).
[CrossRef]

Y. Liau, A. Unterreiner, D. Arnett and N. Scherer, "Femtosecond-pulse cavity -dumped solid-state oscillator design and application to ultrafast microscopy," Appl. Opt. 38, 7386-7392 (1999).
[CrossRef]

E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga and K. Yoshihara,"Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser," Opt. Lett. 21, 354- 356 (1996).
[CrossRef] [PubMed]

S. Cho, B. Bouma, E. Ippen and J. Fujimoto, "Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999).
[CrossRef]

U. Keller, D. Miller, G. Boyd, T. Chiu, J. Ferguson and M. Asorn,"Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresosnant semiconductor Fabry-Perot saturable absorber," Opt. Lett. 17, 505-507 (1992).
[CrossRef] [PubMed]

U. Keller, K. Weingarten, F. Kartner, D.Knopf, B.Braun, I.Jung, R. Fluck,C.Honninger, N. Matuschek, J. aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

I. Jung, F.Kartner, M. Matuschek, D. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, T. Tschudi and U. Keller, "Semiconductor saturable absorber mirrors supporting sub-10-fs pulses," Appl. Phys. B 65, 137-150 (1997).
[CrossRef]

W. Schu�lbauer, Ph.D. dissertation, Institut fur Physikalische und Theoretische Chemie, Universitat Erlangen-Nurnberg, Germany, 1994.

a) F. Kartner and U. Keller, "Stabilization of solitonlike pulses with slow saturable absorber," Opt. Lett. 20 16-18 (1995), b) I. Jung, F. Kartner, L. Brovelli, M. Kamp and U. Keller, "Experimental verfication of soliton modelocking using onl a slow saturable absorber," Opt. Lett. 20, 1892-1895 (1995), c) F. Kartner, I. Jung and U. Keller, "Soliton modelocking with saturable absorber," IEEE J. Sel. Top. Quantum Electron. 2, 540-556, (1996).
[CrossRef] [PubMed]

F. Kartner, J. aus der Au and U. Keller, "Slow and Fast Saturable Absorbers for Modelocking of Solid State Lasers - What's The Difference?," IEEE J. Sel. Top. Quantum Electron. 4, 159-168, (1998).

B.E. Lemoff and C.P. Barty,"Cubic-phase-free dispersion compensation in solid-state ultrashort-pulse lasers," Opt. Lett. 18, 57-60 (1993).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the cavity-dumped Ti:sapphire laser: pump laser (Millenia Spectra Physics); lens, f=50 mm; TS, 10 mm Ti:sapphire crystal (Roditi); M1 -M5, mirror high reflectance, R=10 cm (Laser Optik); OC, output-coupling mirror R≃96% (Laser Optik); P1,P2, SF10 glass prism; RF, cavity-dumper driver unit. In further contrast to previously described experimental arrangements [4, 5, 6, 8] (which employ an additional flat end mirror) the acousto-optic cavity-dumper comprises only the two spherical mirrors M4, M5 (R=10 cm) and the 3.2 mm thick fused-silica cell placed under Brewster’s angle in the focus of M4. The distance between the Bragg cell and M5 is twice the focal length of M5. The cavity-dumper is operated in a double-pass configuration with the deflected beam being displaced vertically by about 3 mm at the position of the outcoupling mirror OC. This setup has the advantage that the deflected pulses transverse the prism pair along an analogous path. The RF input to the Bragg cell is provided by the standard Cavity Dumper Driver unit (Spectra Physics model 454) with a reference signal generated by a photodiode in combination with constant fraction discrimantor (CFD), amplifier and frequency divider (D/2). The advantage of using the CFD is that it produces stable trigger pulses, even though the intracavity pulse energy is low and consequently the photodiode signal small. The intensity ratio between the optimally outcoupled pulse and the preceeding and trailing pulses is on the order of 350 : 1 as determined by the single photon counting technique (Fig. 2). Its value depends sensitively on the careful choice of the timing and phase setting of the driver electronics, as well as on the proper focussing into the Bragg cell. For this purpose, a special mounting frame was buildt allowing for adjustment along 3 rotational and 3 translational degrees of freedom [13].

Fig. 2.
Fig. 2.

Determination of the suppression ratio for the preceeding and consecutive pulses applying the single photon timing technique (dumping rate 800 kHz).

Fig. 3.
Fig. 3.

Intracavity laser pulse dynamics during the dumping process at bottom 80 kHz, middle 800 kHz and top 4.1 MHz showing the overshoot during the recovery at 80 kHz (Ipump =3.5 W).

Fig. 4.
Fig. 4.

Autocorrelation trace of cavity-dumped pulse (collinear second harmonic generation) recorded with dumping rate 800 kHz.

Fig. 5.
Fig. 5.

Spectrum of a dumped output pulse at 800 kHz. The center wavelength of 799 nm is determined by the band gap of the saturable absorber.

Metrics