Abstract

We study the plasmon resonances of 10–100(nm) two-dimensional metal particles with a non-regular shape. Movies illustrate the spectral response of such particles in the optical range. Contrary to particles with a simple shape (cylinder, ellipse) non-regular particles exhibit many distinct resonances over a large spectral range. At resonance frequencies, extremely large enhancements of the electromagnetic fields occur near the surface of the particle, with amplitudes several hundred-fold that of the incident field. Implications of these strong and localized fields for nano-optics and surface enhanced Raman scattering (SERS) are also discussed.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Olivier J.F. Martin's group home page: http://www.ifh.ee.ethz.ch/~martin
  2. H. Metiu "Surface enhanced spectroscopy " Prog. Surf. Sci. 17 153-320 (1984).
    [CrossRef]
  3. M. Moskovits "Surface-enhanced spectroscopy" Rev. Mod. Phys. 57 783-826 (1985).
    [CrossRef]
  4. K. Kneipp et al. "Single molecule detection using surface-enhanced Raman scattering " Phys. Rev. Lett. 78 1667-1670 (1997).
    [CrossRef]
  5. S. Nie and S. R. Emory "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275 1102-1106 (1997).
    [CrossRef] [PubMed]
  6. F. J. Garcia-Vidal and J. B. Pendry "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77 1163-1166 (1996).
    [CrossRef] [PubMed]
  7. F. J. Garcia-Vidal J. M. Pitarke and J. B. Pendry "Silver-filled carbon nanotubes used as spectroscopic enhancers," Phys. Rev. B 58 6783-6786 (1998).
    [CrossRef]
  8. O.J.F. Martin and C. Girard "Controlling and tuning strong optical field gradients at a local probe microscope tip apex," Appl. Phys. Lett. 70 705-707 (1997).
    [CrossRef]
  9. W.-H. Yang G. C. Schatz and R. P. van Duyne "Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape," J. Chem. Phys. 103 1-20 (1995).
    [CrossRef]
  10. T. R. Jensen G. C. Schatz and R. P. van Duyne "Nanosphere lithography : surface plasmon resonance spectrum . . . " J. Phys. Chem. B 103 2394-2401 (1999).
    [CrossRef]
  11. C. F. Bohren and D. R. Huffman Absorption and scattering of light by small particles (John Wiley and Sons New York 1983) Chapter 12.
  12. K. Bromann et al. "Controlled deposition of size-selected solver nanoclusters," Science 274 956- 958 (1996).
    [CrossRef] [PubMed]
  13. D. M. Kolb R. Ullmann and T. Will "Nanofabrication of small copper clusters on gold (111) electrodes by a scanning tunneling microscope," Science 275 1097-1099 (1996).
    [CrossRef]
  14. J. Bosbach et al. "Laser-based method for fabricating monodispersive metallic nanoparticles," Appl. Phys. Lett. 74 2605-2607 (1999).
    [CrossRef]
  15. P. B. Johnson and R. W. Christy "Optical constants of the noble metals," Phys. Rev. B 6 4370-4379 (1972).
    [CrossRef]
  16. U. Kreibig and C. v. Fragstein "The limitation of electron mean free path in small silver particles," Z. Phys. 224 307-323 (1969).
    [CrossRef]
  17. J. P. Kottmann and O. J. F. Martin "Accurate solution of the volume integral equation for high permittivit scatterers " IEEE Trans. Antennas Propag. in press (2000).
    [CrossRef]
  18. J. P. Kottmann O. J. F. Martin D. R. Smith and S. Schultz "Dramatic localized electromagnetic enhancement in plasmon resonant nanoparticles," submitted to Phys. Rev. Lett. (2000).

Other

Olivier J.F. Martin's group home page: http://www.ifh.ee.ethz.ch/~martin

H. Metiu "Surface enhanced spectroscopy " Prog. Surf. Sci. 17 153-320 (1984).
[CrossRef]

M. Moskovits "Surface-enhanced spectroscopy" Rev. Mod. Phys. 57 783-826 (1985).
[CrossRef]

K. Kneipp et al. "Single molecule detection using surface-enhanced Raman scattering " Phys. Rev. Lett. 78 1667-1670 (1997).
[CrossRef]

S. Nie and S. R. Emory "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275 1102-1106 (1997).
[CrossRef] [PubMed]

F. J. Garcia-Vidal and J. B. Pendry "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77 1163-1166 (1996).
[CrossRef] [PubMed]

F. J. Garcia-Vidal J. M. Pitarke and J. B. Pendry "Silver-filled carbon nanotubes used as spectroscopic enhancers," Phys. Rev. B 58 6783-6786 (1998).
[CrossRef]

O.J.F. Martin and C. Girard "Controlling and tuning strong optical field gradients at a local probe microscope tip apex," Appl. Phys. Lett. 70 705-707 (1997).
[CrossRef]

W.-H. Yang G. C. Schatz and R. P. van Duyne "Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape," J. Chem. Phys. 103 1-20 (1995).
[CrossRef]

T. R. Jensen G. C. Schatz and R. P. van Duyne "Nanosphere lithography : surface plasmon resonance spectrum . . . " J. Phys. Chem. B 103 2394-2401 (1999).
[CrossRef]

C. F. Bohren and D. R. Huffman Absorption and scattering of light by small particles (John Wiley and Sons New York 1983) Chapter 12.

K. Bromann et al. "Controlled deposition of size-selected solver nanoclusters," Science 274 956- 958 (1996).
[CrossRef] [PubMed]

D. M. Kolb R. Ullmann and T. Will "Nanofabrication of small copper clusters on gold (111) electrodes by a scanning tunneling microscope," Science 275 1097-1099 (1996).
[CrossRef]

J. Bosbach et al. "Laser-based method for fabricating monodispersive metallic nanoparticles," Appl. Phys. Lett. 74 2605-2607 (1999).
[CrossRef]

P. B. Johnson and R. W. Christy "Optical constants of the noble metals," Phys. Rev. B 6 4370-4379 (1972).
[CrossRef]

U. Kreibig and C. v. Fragstein "The limitation of electron mean free path in small silver particles," Z. Phys. 224 307-323 (1969).
[CrossRef]

J. P. Kottmann and O. J. F. Martin "Accurate solution of the volume integral equation for high permittivit scatterers " IEEE Trans. Antennas Propag. in press (2000).
[CrossRef]

J. P. Kottmann O. J. F. Martin D. R. Smith and S. Schultz "Dramatic localized electromagnetic enhancement in plasmon resonant nanoparticles," submitted to Phys. Rev. Lett. (2000).

Supplementary Material (12)

» Media 1: MOV (594 KB)     
» Media 2: MOV (574 KB)     
» Media 3: MOV (592 KB)     
» Media 4: MOV (756 KB)     
» Media 5: MOV (754 KB)     
» Media 6: MOV (740 KB)     
» Media 7: MOV (695 KB)     
» Media 8: MOV (756 KB)     
» Media 9: MOV (832 KB)     
» Media 10: MOV (943 KB)     
» Media 11: MOV (944 KB)     
» Media 12: MOV (924 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

SCS for an ellipse [overall size 20 (nm)×10 (nm)]. Influence of the propagation direction.

Fig. 2.
Fig. 2.

Movies of the field amplitude distribution for a 20 (nm)×10 (nm) ellipse illuminated along the (a) (01)-direction (609 KB),(b) (10)-direction (589 KB),(c) (11)-direction (606 KB) in the λ=300 (nm) … 600 (nm) wavelength range. Front pictures: (a) λ=357 (nm),(b) λ=331 (nm),(c) λ=357 (nm).

Fig. 3.
Fig. 3.

SCS for a 20 (nm) base right angled isosceles triangular particle for three different incident direction.

Fig. 4.
Fig. 4.

Movies of the field amplitude distribution of the 20 (nm) triangular particle illuminated along the (a) (11)-direction (775 KB),(b) (10)-direction (772 KB),(c) (11̄)-direction (758 KB) in the 300–600 (nm) wavelength range. Front pictures: (a) λ=412 (nm),(b) λ=365 (nm),(c) λ=363 (nm).

Fig. 5.
Fig. 5.

SCS for right angled isosceles triangular particles illuminated along the (11)-direction. Four different particle sizes are investigated: 10,20,50 and 100 (nm) base.

Fig. 6.
Fig. 6.

Movies of the field amplitude distribution for right angled isosceles triangular particles illuminated along the (11)-direction with (a) 10 (nm) base (712 KB),(b) 20 (nm) base (775 KB),(c) 50 (nm) base (758 KB) in the 300–600 (nm) wavelength range. The front pictures represent the corresponding main resonance: (a) λ=401 (nm),(b) λ=412 (nm),(c) λ=427 (nm).

Fig. 7.
Fig. 7.

SCS for a 10 (nm) base,20 (nm) perpendicular right angled triangle for three different incident directions.

Fig. 8.
Fig. 8.

Movies of the field amplitude distribution of the 10 (nm) base,20 (nm) perpendicular right angled triangular particle illuminated along the (a) (11)-direction (966 KB),(b) (10)-direction (967 KB),(c) (11̄)direction (947 KB). Front pictures: (a) λ=458 (nm),(b) λ=392 (nm),(c) λ=364 (nm),movies: (a)–(c): λ=300 (nm)…600 (nm).

Metrics