Abstract

The use of liquid crystal devices for wavefront control has been suggested and implemented by several authors. In this paper we report some preliminary results on the use of Nematic based liquid crystal devices. Several experimental efforts have been carried out in the past few months. One of the main aims was to characterize a new device that uses dual frequency nematic material in a closed loop arrangement.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.R. Restainoet al.., “Use of electro-optical devices for path-length compensation”, Proc. Soc. Phot. Opt. Instrum. Eng. 2200,46–48 (1994)
  2. P.V. Mitchellet al. , “Innovative adaptive optics using liquid crystal light valve”, Optical Society of America, Washington, D.C. (1992)
  3. G.D. Love, J.S. Fender, and S.R. Restaino, “Adaptive wavefront shaping using liquid crystals”, Opt. And Phot. News 6, 16–20 (1995)
    [CrossRef]
  4. G.D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator”, App. Opt. 36, 1517–1524 (1997)
    [CrossRef]
  5. A.V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characteristics”, Opt. Comm. 141, 247–253 (1997)
    [CrossRef]
  6. DC Dayton, SL Browne, and S.P. Sandven et. Al., “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics”, App. Opt. 37, 5579–5589 (1998)
    [CrossRef]
  7. R.S. Dou and M.K. Giles, “Closed loop adaptive optics system with a liquid-crystal television as a phase retarder”, Opt. Lett. 20, 1583–1585 (1995)
    [CrossRef] [PubMed]
  8. T.L. Kelly and G.D. Love, “White light performance of a polarization-independent liquid crystal phase modulator”, App. Opt. 38, 1986–1989 (1999)
    [CrossRef]
  9. J. Gourlay, G.D. Love, and P.M. Birch, et al. “A real time closed loop liquid crystal adaptive optics system: first results”, Opt. Comm. 137, 17–21 (1997)
    [CrossRef]
  10. D. Bonacciniet al., “Adaptive optics wavefront corrector using addressable liquid crystal retarders”, Proc. Soc. Phot. Opt. Instrum. Eng. 1334, 89–97 (1990)
  11. A. Purviset al., “Optical design, simulation, and testing of an addressable 64×64 liquid crystal phase plate”, Proc. Soc. Phot. Opt. Instrum. Eng. 2000, 96–98 (1993)
  12. V.A. Dorezyuk, A.F. Naumov, and V.I. Shmalgauzen, “Control of liquid crystal correctors in adaptive optical systems”, Sov. Phys. Tech. Phys. 34, 1384 (1989)
  13. W. Klauset al., “Adaptive LC lens array and its applications”, Proc. Soc. Phot. Opt. Instrum. Eng. 3635, 66–73 (1999)
  14. SR Restainoet al., “Progress report on the USAF Research Laboratory liquid crystal AO program”, Proc. Soc. Phot. Opt. Instrum. Eng.,  3353, 776–781 (1998)
  15. G. Labrunie and J. Robert, “Fluctuation and scattering of light in nematic liquid crystals”, Journal App. Phys. 44, 48-69-4874 (1973)
  16. G.D. Love, “Liquid crystal phase modulator for unpolarized light”, Appl. Opt. 32, 2222–2223 (1993)
    [CrossRef] [PubMed]

1999 (2)

T.L. Kelly and G.D. Love, “White light performance of a polarization-independent liquid crystal phase modulator”, App. Opt. 38, 1986–1989 (1999)
[CrossRef]

W. Klauset al., “Adaptive LC lens array and its applications”, Proc. Soc. Phot. Opt. Instrum. Eng. 3635, 66–73 (1999)

1998 (2)

SR Restainoet al., “Progress report on the USAF Research Laboratory liquid crystal AO program”, Proc. Soc. Phot. Opt. Instrum. Eng.,  3353, 776–781 (1998)

DC Dayton, SL Browne, and S.P. Sandven et. Al., “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics”, App. Opt. 37, 5579–5589 (1998)
[CrossRef]

1997 (3)

J. Gourlay, G.D. Love, and P.M. Birch, et al. “A real time closed loop liquid crystal adaptive optics system: first results”, Opt. Comm. 137, 17–21 (1997)
[CrossRef]

G.D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator”, App. Opt. 36, 1517–1524 (1997)
[CrossRef]

A.V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characteristics”, Opt. Comm. 141, 247–253 (1997)
[CrossRef]

1995 (2)

G.D. Love, J.S. Fender, and S.R. Restaino, “Adaptive wavefront shaping using liquid crystals”, Opt. And Phot. News 6, 16–20 (1995)
[CrossRef]

R.S. Dou and M.K. Giles, “Closed loop adaptive optics system with a liquid-crystal television as a phase retarder”, Opt. Lett. 20, 1583–1585 (1995)
[CrossRef] [PubMed]

1994 (1)

S.R. Restainoet al.., “Use of electro-optical devices for path-length compensation”, Proc. Soc. Phot. Opt. Instrum. Eng. 2200,46–48 (1994)

1993 (2)

A. Purviset al., “Optical design, simulation, and testing of an addressable 64×64 liquid crystal phase plate”, Proc. Soc. Phot. Opt. Instrum. Eng. 2000, 96–98 (1993)

G.D. Love, “Liquid crystal phase modulator for unpolarized light”, Appl. Opt. 32, 2222–2223 (1993)
[CrossRef] [PubMed]

1990 (1)

D. Bonacciniet al., “Adaptive optics wavefront corrector using addressable liquid crystal retarders”, Proc. Soc. Phot. Opt. Instrum. Eng. 1334, 89–97 (1990)

1989 (1)

V.A. Dorezyuk, A.F. Naumov, and V.I. Shmalgauzen, “Control of liquid crystal correctors in adaptive optical systems”, Sov. Phys. Tech. Phys. 34, 1384 (1989)

1973 (1)

G. Labrunie and J. Robert, “Fluctuation and scattering of light in nematic liquid crystals”, Journal App. Phys. 44, 48-69-4874 (1973)

Birch, P.M.

J. Gourlay, G.D. Love, and P.M. Birch, et al. “A real time closed loop liquid crystal adaptive optics system: first results”, Opt. Comm. 137, 17–21 (1997)
[CrossRef]

Bonaccini, D.

D. Bonacciniet al., “Adaptive optics wavefront corrector using addressable liquid crystal retarders”, Proc. Soc. Phot. Opt. Instrum. Eng. 1334, 89–97 (1990)

Browne, S.

A.V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characteristics”, Opt. Comm. 141, 247–253 (1997)
[CrossRef]

Browne, SL

DC Dayton, SL Browne, and S.P. Sandven et. Al., “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics”, App. Opt. 37, 5579–5589 (1998)
[CrossRef]

Dayton, DC

DC Dayton, SL Browne, and S.P. Sandven et. Al., “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics”, App. Opt. 37, 5579–5589 (1998)
[CrossRef]

Dorezyuk, V.A.

V.A. Dorezyuk, A.F. Naumov, and V.I. Shmalgauzen, “Control of liquid crystal correctors in adaptive optical systems”, Sov. Phys. Tech. Phys. 34, 1384 (1989)

Dou, R.S.

Fender, J.S.

G.D. Love, J.S. Fender, and S.R. Restaino, “Adaptive wavefront shaping using liquid crystals”, Opt. And Phot. News 6, 16–20 (1995)
[CrossRef]

Giles, M.K.

Gonglewski, J.

A.V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characteristics”, Opt. Comm. 141, 247–253 (1997)
[CrossRef]

Gourlay, J.

J. Gourlay, G.D. Love, and P.M. Birch, et al. “A real time closed loop liquid crystal adaptive optics system: first results”, Opt. Comm. 137, 17–21 (1997)
[CrossRef]

Highland, R.

A.V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characteristics”, Opt. Comm. 141, 247–253 (1997)
[CrossRef]

Kelly, T.L.

T.L. Kelly and G.D. Love, “White light performance of a polarization-independent liquid crystal phase modulator”, App. Opt. 38, 1986–1989 (1999)
[CrossRef]

Klaus, W.

W. Klauset al., “Adaptive LC lens array and its applications”, Proc. Soc. Phot. Opt. Instrum. Eng. 3635, 66–73 (1999)

Kudryashov, A.V.

A.V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characteristics”, Opt. Comm. 141, 247–253 (1997)
[CrossRef]

Labrunie, G.

G. Labrunie and J. Robert, “Fluctuation and scattering of light in nematic liquid crystals”, Journal App. Phys. 44, 48-69-4874 (1973)

Love, G.D.

T.L. Kelly and G.D. Love, “White light performance of a polarization-independent liquid crystal phase modulator”, App. Opt. 38, 1986–1989 (1999)
[CrossRef]

J. Gourlay, G.D. Love, and P.M. Birch, et al. “A real time closed loop liquid crystal adaptive optics system: first results”, Opt. Comm. 137, 17–21 (1997)
[CrossRef]

G.D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator”, App. Opt. 36, 1517–1524 (1997)
[CrossRef]

G.D. Love, J.S. Fender, and S.R. Restaino, “Adaptive wavefront shaping using liquid crystals”, Opt. And Phot. News 6, 16–20 (1995)
[CrossRef]

G.D. Love, “Liquid crystal phase modulator for unpolarized light”, Appl. Opt. 32, 2222–2223 (1993)
[CrossRef] [PubMed]

Mitchell, P.V.

P.V. Mitchellet al. , “Innovative adaptive optics using liquid crystal light valve”, Optical Society of America, Washington, D.C. (1992)

Naumov, A.F.

V.A. Dorezyuk, A.F. Naumov, and V.I. Shmalgauzen, “Control of liquid crystal correctors in adaptive optical systems”, Sov. Phys. Tech. Phys. 34, 1384 (1989)

Purvis, A.

A. Purviset al., “Optical design, simulation, and testing of an addressable 64×64 liquid crystal phase plate”, Proc. Soc. Phot. Opt. Instrum. Eng. 2000, 96–98 (1993)

Restaino, S.R.

G.D. Love, J.S. Fender, and S.R. Restaino, “Adaptive wavefront shaping using liquid crystals”, Opt. And Phot. News 6, 16–20 (1995)
[CrossRef]

S.R. Restainoet al.., “Use of electro-optical devices for path-length compensation”, Proc. Soc. Phot. Opt. Instrum. Eng. 2200,46–48 (1994)

Restaino, SR

SR Restainoet al., “Progress report on the USAF Research Laboratory liquid crystal AO program”, Proc. Soc. Phot. Opt. Instrum. Eng.,  3353, 776–781 (1998)

Robert, J.

G. Labrunie and J. Robert, “Fluctuation and scattering of light in nematic liquid crystals”, Journal App. Phys. 44, 48-69-4874 (1973)

Sandven, S.P.

DC Dayton, SL Browne, and S.P. Sandven et. Al., “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics”, App. Opt. 37, 5579–5589 (1998)
[CrossRef]

Shmalgauzen, V.I.

V.A. Dorezyuk, A.F. Naumov, and V.I. Shmalgauzen, “Control of liquid crystal correctors in adaptive optical systems”, Sov. Phys. Tech. Phys. 34, 1384 (1989)

App. Opt. (3)

G.D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator”, App. Opt. 36, 1517–1524 (1997)
[CrossRef]

T.L. Kelly and G.D. Love, “White light performance of a polarization-independent liquid crystal phase modulator”, App. Opt. 38, 1986–1989 (1999)
[CrossRef]

DC Dayton, SL Browne, and S.P. Sandven et. Al., “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics”, App. Opt. 37, 5579–5589 (1998)
[CrossRef]

Appl. Opt. (1)

Journal App. Phys. (1)

G. Labrunie and J. Robert, “Fluctuation and scattering of light in nematic liquid crystals”, Journal App. Phys. 44, 48-69-4874 (1973)

Opt. And Phot. News (1)

G.D. Love, J.S. Fender, and S.R. Restaino, “Adaptive wavefront shaping using liquid crystals”, Opt. And Phot. News 6, 16–20 (1995)
[CrossRef]

Opt. Comm. (2)

J. Gourlay, G.D. Love, and P.M. Birch, et al. “A real time closed loop liquid crystal adaptive optics system: first results”, Opt. Comm. 137, 17–21 (1997)
[CrossRef]

A.V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characteristics”, Opt. Comm. 141, 247–253 (1997)
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Phot. Opt. Instrum. Eng. (5)

W. Klauset al., “Adaptive LC lens array and its applications”, Proc. Soc. Phot. Opt. Instrum. Eng. 3635, 66–73 (1999)

SR Restainoet al., “Progress report on the USAF Research Laboratory liquid crystal AO program”, Proc. Soc. Phot. Opt. Instrum. Eng.,  3353, 776–781 (1998)

S.R. Restainoet al.., “Use of electro-optical devices for path-length compensation”, Proc. Soc. Phot. Opt. Instrum. Eng. 2200,46–48 (1994)

D. Bonacciniet al., “Adaptive optics wavefront corrector using addressable liquid crystal retarders”, Proc. Soc. Phot. Opt. Instrum. Eng. 1334, 89–97 (1990)

A. Purviset al., “Optical design, simulation, and testing of an addressable 64×64 liquid crystal phase plate”, Proc. Soc. Phot. Opt. Instrum. Eng. 2000, 96–98 (1993)

Sov. Phys. Tech. Phys. (1)

V.A. Dorezyuk, A.F. Naumov, and V.I. Shmalgauzen, “Control of liquid crystal correctors in adaptive optical systems”, Sov. Phys. Tech. Phys. 34, 1384 (1989)

Other (1)

P.V. Mitchellet al. , “Innovative adaptive optics using liquid crystal light valve”, Optical Society of America, Washington, D.C. (1992)

Supplementary Material (1)

» Media 1: MOV (108 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1.
Figure 1.

Measured performances of dual frequency material vs. frequency

Figure 2.
Figure 2.

Schematic lay-out of the experiment

Figure 3.
Figure 3.

Average uncompensated and compensated images.

Figure 4.
Figure 4.

Video of the closed-loop experiment.(942 KB movie size)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

OP = Δ z · n .
Δ ϕ = 2 π λ d 2 d 2 [ n ( z ) n ] dz + Δ Φ .

Metrics