Abstract

We discuss the design, fabrication and optical performance of a broadband form-birefringent quarter-wave plate for the 3.5 to 5 µm wavelength region. Rigorous coupled wave analysis (RCWA) was used to design the requisite subwavelength grating for silicon substrates in ambient air. Fabricated samples yield a measured phase retardation of 89° to 102° over the desired wavelength range.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett 42, 492–49 (1983).
    [CrossRef]
  2. F. Xu, R. C. Tyan, P. C. Sun, and Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 24, 2457–2459 (1995).
    [CrossRef]
  3. T. J. Kim, G. Campbell, and R. K. Kostuk, “Volume holographic phase-retardation elements,” Opt. Lett. 20, 2030–2032 (1995).
    [CrossRef] [PubMed]
  4. R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings”, Opt. Lett. 21, 82–89 (1996).
    [CrossRef]
  5. A. G. Lopez and H. G. Craighead, “Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating,” Opt. Lett. 23, 1627–1629 (1998).
    [CrossRef]
  6. S. Y. Chou, S. J. Schablitsky, and L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
    [CrossRef]
  7. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-waveplates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997).
    [CrossRef] [PubMed]
  8. D. B. Chenault and R. A. Chipman, “Infrared birefringence spectra for cadmium sulfide and cadmium selenide”, Appl. Opt. 32, 4223–4227 (1993).
    [CrossRef] [PubMed]
  9. William L. Wolfe and George J. Zissis, ed., Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Michigan, 1985), pp. 7–76.
  10. S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
    [CrossRef]

1998 (1)

1997 (3)

H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-waveplates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997).
[CrossRef] [PubMed]

S. Y. Chou, S. J. Schablitsky, and L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
[CrossRef]

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

1996 (1)

R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings”, Opt. Lett. 21, 82–89 (1996).
[CrossRef]

1995 (2)

T. J. Kim, G. Campbell, and R. K. Kostuk, “Volume holographic phase-retardation elements,” Opt. Lett. 20, 2030–2032 (1995).
[CrossRef] [PubMed]

F. Xu, R. C. Tyan, P. C. Sun, and Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 24, 2457–2459 (1995).
[CrossRef]

1993 (1)

1983 (1)

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett 42, 492–49 (1983).
[CrossRef]

Campbell, G.

Chenault, D. B.

Chipman, R. A.

Chou, S. Y.

S. Y. Chou, S. J. Schablitsky, and L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
[CrossRef]

Craighead, H. G.

Fainman, Y.

R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings”, Opt. Lett. 21, 82–89 (1996).
[CrossRef]

F. Xu, R. C. Tyan, P. C. Sun, and Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 24, 2457–2459 (1995).
[CrossRef]

Flanders, D. C.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett 42, 492–49 (1983).
[CrossRef]

Gogolides, E.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

Grigoropoulos, S.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

Iwata, K.

Kikuta, H.

Kim, T. J.

Kostuk, R. K.

Lopez, A. G.

Nassiopoulos, A. G.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

Ohira, Y.

Schablitsky, S. J.

S. Y. Chou, S. J. Schablitsky, and L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
[CrossRef]

Scherer, A.

R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings”, Opt. Lett. 21, 82–89 (1996).
[CrossRef]

Sun, P. C.

R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings”, Opt. Lett. 21, 82–89 (1996).
[CrossRef]

F. Xu, R. C. Tyan, P. C. Sun, and Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 24, 2457–2459 (1995).
[CrossRef]

Tserepi, A. D.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

Tyan, R. C.

R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings”, Opt. Lett. 21, 82–89 (1996).
[CrossRef]

F. Xu, R. C. Tyan, P. C. Sun, and Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 24, 2457–2459 (1995).
[CrossRef]

Xu, F.

F. Xu, R. C. Tyan, P. C. Sun, and Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 24, 2457–2459 (1995).
[CrossRef]

Zhuang, L.

S. Y. Chou, S. J. Schablitsky, and L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett (1)

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett 42, 492–49 (1983).
[CrossRef]

J. Vac. Sci. Technol. B (2)

S. Y. Chou, S. J. Schablitsky, and L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
[CrossRef]

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

Opt. Lett. (4)

T. J. Kim, G. Campbell, and R. K. Kostuk, “Volume holographic phase-retardation elements,” Opt. Lett. 20, 2030–2032 (1995).
[CrossRef] [PubMed]

A. G. Lopez and H. G. Craighead, “Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating,” Opt. Lett. 23, 1627–1629 (1998).
[CrossRef]

F. Xu, R. C. Tyan, P. C. Sun, and Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 24, 2457–2459 (1995).
[CrossRef]

R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings”, Opt. Lett. 21, 82–89 (1996).
[CrossRef]

Other (1)

William L. Wolfe and George J. Zissis, ed., Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Michigan, 1985), pp. 7–76.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of a form birefringent wave plate and a normally incident beam showing TE and TM polarization definitions.

Fig. 2.
Fig. 2.

Phase retardation as a function of wavelength for 1.0 µm period gratings parameterized by (a) fill factor (for a thickness of 1.25 µm) and (b) thickness (for a fill factor of 66%).

Fig. 3.
Fig. 3.

(a) Scanning electron microscope (SEM) cross section image of a photoresist grating on Si. (b) SEM top view image of Cr etch mask (on Si) with a Cr fill factor of ~70%.

Fig. 4.
Fig. 4.

SEM cross section image of etched Si grating.

Fig. 5.
Fig. 5.

(a) Measured and simulated phase retardation as a function of wavelength and (b) the corresponding TE and TM transmission coefficients.

Tables (1)

Tables Icon

Table 1. RCWA binary grating layer parameters. The layers are numbered from top to bottom.

Metrics