Abstract

We present experimental studies on the transverse mode emission behaviour of oxide-conned Vertical Cavity Surface Emitting Lasers (VCSELs). VCSELs with aperture diameters of 6µm and 11µm exhibit a wide variety of emission patterns from low order Hermite-Gaussian modes to high order Laguerre-Gaussian modes. We obtain detailed information about the spatial gain distribution by recording spontaneous emission intensity profiles during lasing operation. We conclude from these profiles, that the spatial carrier distribution is primarily governed by the influence of pump induced current spreading and is only secondarily influenced by further effects such as spatial hole burning, and thermal gradients in the laser. The combination of these mechanisms causes a strong tendency towards the emission of high order transverse modes.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner, and B. Weigl, “Efficient Vertical Cavity Surface Emitting Laser Diodes for High Bit Rate Optical Data Transmission,” Int. J. Electron. Commun. 50, 316–326 (1996).
  2. C. Degen, J.-L. Vey, W. Elsäßer, P. Schnitzer, and K. J. Ebeling, “Amplitude noise squeezed light from a polarisation single mode VCSEL,” Electron. Lett. 34, 1585–1586 (1998).
    [CrossRef]
  3. C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
    [CrossRef]
  4. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
    [CrossRef]
  5. I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
    [CrossRef]
  6. H. Li, T. L. Lucas, J. G. McInerny, and R. A. Morgan, “Transverse Modes and Patterns of Electrically Pumped Vertical-cavity surface-emitting Semiconductor Lasers,” Chaos, Solitons & Fractals4 (1994).
    [CrossRef]
  7. Y. G. Zhao and J. McInerny, “Transverse-Mode Control of Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
    [CrossRef]
  8. W. Nakwaski and R. P. Sarzala, “Transverse modes in gain-guided vertical-cavity surface-emitting lasers,” Opt. Commun. 148, 63–69 (1998).
    [CrossRef]
  9. J. Wilk, R. P. Sarzala, and W. Nakwaski, “The spatial hole burning e ect in gain-guided verticalcavity surface-emitting lasers,” J. Phys. D: Appl. Phys. 31, L11–L15 (1998).
    [CrossRef]
  10. K. L. Lear, K. D. Choquette, R. P. Schneider, and S. P. Kilcoyne, “Modal analysis of a small surface emitting laser with a selectively oxidized waveguide,” Appl. Phys. Lett. 66, 2616–2618 (1995).
    [CrossRef]
  11. D. L. Huaffaker, D. G. Deppe, and T. J. Rogers, “Transverse mode behaviour in native-oxidede-defined low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 1611–1613 (1994).
    [CrossRef]
  12. C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
    [CrossRef]
  13. J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg, and H. W. Lehmann, “Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 69, 722–724 (1996).
    [CrossRef]
  14. S. F. Pereira, M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 2239–2241 (1998).
    [CrossRef]
  15. W. Nakwaski, “Current spreading and series resistance of proton-implanted vertical-cavity top-surface-emitting lasers,” Appl. Phys. A 61, 123–127 (1995).
    [CrossRef]
  16. D. Vakhshoori, J. D. Wynn, and G. J. Zydzik, “Top-surface emitting lasers with 1.9 V threshold voltage and the e ect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
    [CrossRef]
  17. G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focussing in vertical-caivity surface-emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
    [CrossRef]

1998 (4)

C. Degen, J.-L. Vey, W. Elsäßer, P. Schnitzer, and K. J. Ebeling, “Amplitude noise squeezed light from a polarisation single mode VCSEL,” Electron. Lett. 34, 1585–1586 (1998).
[CrossRef]

W. Nakwaski and R. P. Sarzala, “Transverse modes in gain-guided vertical-cavity surface-emitting lasers,” Opt. Commun. 148, 63–69 (1998).
[CrossRef]

J. Wilk, R. P. Sarzala, and W. Nakwaski, “The spatial hole burning e ect in gain-guided verticalcavity surface-emitting lasers,” J. Phys. D: Appl. Phys. 31, L11–L15 (1998).
[CrossRef]

S. F. Pereira, M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 2239–2241 (1998).
[CrossRef]

1997 (1)

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
[CrossRef]

1996 (4)

J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg, and H. W. Lehmann, “Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 69, 722–724 (1996).
[CrossRef]

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[CrossRef]

Y. G. Zhao and J. McInerny, “Transverse-Mode Control of Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
[CrossRef]

K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner, and B. Weigl, “Efficient Vertical Cavity Surface Emitting Laser Diodes for High Bit Rate Optical Data Transmission,” Int. J. Electron. Commun. 50, 316–326 (1996).

1995 (2)

K. L. Lear, K. D. Choquette, R. P. Schneider, and S. P. Kilcoyne, “Modal analysis of a small surface emitting laser with a selectively oxidized waveguide,” Appl. Phys. Lett. 66, 2616–2618 (1995).
[CrossRef]

W. Nakwaski, “Current spreading and series resistance of proton-implanted vertical-cavity top-surface-emitting lasers,” Appl. Phys. A 61, 123–127 (1995).
[CrossRef]

1994 (2)

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focussing in vertical-caivity surface-emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

D. L. Huaffaker, D. G. Deppe, and T. J. Rogers, “Transverse mode behaviour in native-oxidede-defined low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 1611–1613 (1994).
[CrossRef]

1993 (1)

D. Vakhshoori, J. D. Wynn, and G. J. Zydzik, “Top-surface emitting lasers with 1.9 V threshold voltage and the e ect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

1991 (1)

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

1990 (1)

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Choquette, K. D.

K. L. Lear, K. D. Choquette, R. P. Schneider, and S. P. Kilcoyne, “Modal analysis of a small surface emitting laser with a selectively oxidized waveguide,” Appl. Phys. Lett. 66, 2616–2618 (1995).
[CrossRef]

Degen, C.

C. Degen, J.-L. Vey, W. Elsäßer, P. Schnitzer, and K. J. Ebeling, “Amplitude noise squeezed light from a polarisation single mode VCSEL,” Electron. Lett. 34, 1585–1586 (1998).
[CrossRef]

Deppe, D. G.

D. L. Huaffaker, D. G. Deppe, and T. J. Rogers, “Transverse mode behaviour in native-oxidede-defined low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 1611–1613 (1994).
[CrossRef]

Ebeling, K. J.

C. Degen, J.-L. Vey, W. Elsäßer, P. Schnitzer, and K. J. Ebeling, “Amplitude noise squeezed light from a polarisation single mode VCSEL,” Electron. Lett. 34, 1585–1586 (1998).
[CrossRef]

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
[CrossRef]

K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner, and B. Weigl, “Efficient Vertical Cavity Surface Emitting Laser Diodes for High Bit Rate Optical Data Transmission,” Int. J. Electron. Commun. 50, 316–326 (1996).

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[CrossRef]

Elsäßer, W.

C. Degen, J.-L. Vey, W. Elsäßer, P. Schnitzer, and K. J. Ebeling, “Amplitude noise squeezed light from a polarisation single mode VCSEL,” Electron. Lett. 34, 1585–1586 (1998).
[CrossRef]

Epler, J. E.

J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg, and H. W. Lehmann, “Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 69, 722–724 (1996).
[CrossRef]

Fiedler, U.

K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner, and B. Weigl, “Efficient Vertical Cavity Surface Emitting Laser Diodes for High Bit Rate Optical Data Transmission,” Int. J. Electron. Commun. 50, 316–326 (1996).

Florez, L. T.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Gehrsitz, S.

J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg, and H. W. Lehmann, “Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 69, 722–724 (1996).
[CrossRef]

Grabherr, M.

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
[CrossRef]

Gulden, K. H.

J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg, and H. W. Lehmann, “Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 69, 722–724 (1996).
[CrossRef]

Harbison, J. P.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Hasnain, G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

Hörsch, I.

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[CrossRef]

Huaffaker, D. L.

D. L. Huaffaker, D. G. Deppe, and T. J. Rogers, “Transverse mode behaviour in native-oxidede-defined low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 1611–1613 (1994).
[CrossRef]

Jäger, R.

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
[CrossRef]

Jung, C.

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
[CrossRef]

Kilcoyne, S. P.

K. L. Lear, K. D. Choquette, R. P. Schneider, and S. P. Kilcoyne, “Modal analysis of a small surface emitting laser with a selectively oxidized waveguide,” Appl. Phys. Lett. 66, 2616–2618 (1995).
[CrossRef]

Kuchta, D. M.

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focussing in vertical-caivity surface-emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

Kusche, R.

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[CrossRef]

Lear, K. L.

K. L. Lear, K. D. Choquette, R. P. Schneider, and S. P. Kilcoyne, “Modal analysis of a small surface emitting laser with a selectively oxidized waveguide,” Appl. Phys. Lett. 66, 2616–2618 (1995).
[CrossRef]

Lehmann, H. W.

J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg, and H. W. Lehmann, “Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 69, 722–724 (1996).
[CrossRef]

Li, H.

H. Li, T. L. Lucas, J. G. McInerny, and R. A. Morgan, “Transverse Modes and Patterns of Electrically Pumped Vertical-cavity surface-emitting Semiconductor Lasers,” Chaos, Solitons & Fractals4 (1994).
[CrossRef]

Lucas, T. L.

H. Li, T. L. Lucas, J. G. McInerny, and R. A. Morgan, “Transverse Modes and Patterns of Electrically Pumped Vertical-cavity surface-emitting Semiconductor Lasers,” Chaos, Solitons & Fractals4 (1994).
[CrossRef]

Marti, O.

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[CrossRef]

McInerny, J.

Y. G. Zhao and J. McInerny, “Transverse-Mode Control of Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
[CrossRef]

McInerny, J. G.

H. Li, T. L. Lucas, J. G. McInerny, and R. A. Morgan, “Transverse Modes and Patterns of Electrically Pumped Vertical-cavity surface-emitting Semiconductor Lasers,” Chaos, Solitons & Fractals4 (1994).
[CrossRef]

Michalzik, R.

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
[CrossRef]

K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner, and B. Weigl, “Efficient Vertical Cavity Surface Emitting Laser Diodes for High Bit Rate Optical Data Transmission,” Int. J. Electron. Commun. 50, 316–326 (1996).

Morgan, R. A.

H. Li, T. L. Lucas, J. G. McInerny, and R. A. Morgan, “Transverse Modes and Patterns of Electrically Pumped Vertical-cavity surface-emitting Semiconductor Lasers,” Chaos, Solitons & Fractals4 (1994).
[CrossRef]

Moser, M.

J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg, and H. W. Lehmann, “Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 69, 722–724 (1996).
[CrossRef]

Müller, S.

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
[CrossRef]

Nakwaski, W.

W. Nakwaski and R. P. Sarzala, “Transverse modes in gain-guided vertical-cavity surface-emitting lasers,” Opt. Commun. 148, 63–69 (1998).
[CrossRef]

J. Wilk, R. P. Sarzala, and W. Nakwaski, “The spatial hole burning e ect in gain-guided verticalcavity surface-emitting lasers,” J. Phys. D: Appl. Phys. 31, L11–L15 (1998).
[CrossRef]

W. Nakwaski, “Current spreading and series resistance of proton-implanted vertical-cavity top-surface-emitting lasers,” Appl. Phys. A 61, 123–127 (1995).
[CrossRef]

Orenstein, M.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Pereira, S. F.

S. F. Pereira, M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 2239–2241 (1998).
[CrossRef]

Reiner, G.

K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner, and B. Weigl, “Efficient Vertical Cavity Surface Emitting Laser Diodes for High Bit Rate Optical Data Transmission,” Int. J. Electron. Commun. 50, 316–326 (1996).

Rogers, T. J.

D. L. Huaffaker, D. G. Deppe, and T. J. Rogers, “Transverse mode behaviour in native-oxidede-defined low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 1611–1613 (1994).
[CrossRef]

Sarzala, R. P.

W. Nakwaski and R. P. Sarzala, “Transverse modes in gain-guided vertical-cavity surface-emitting lasers,” Opt. Commun. 148, 63–69 (1998).
[CrossRef]

J. Wilk, R. P. Sarzala, and W. Nakwaski, “The spatial hole burning e ect in gain-guided verticalcavity surface-emitting lasers,” J. Phys. D: Appl. Phys. 31, L11–L15 (1998).
[CrossRef]

Schneider, R. P.

K. L. Lear, K. D. Choquette, R. P. Schneider, and S. P. Kilcoyne, “Modal analysis of a small surface emitting laser with a selectively oxidized waveguide,” Appl. Phys. Lett. 66, 2616–2618 (1995).
[CrossRef]

Schnitzer, P.

C. Degen, J.-L. Vey, W. Elsäßer, P. Schnitzer, and K. J. Ebeling, “Amplitude noise squeezed light from a polarisation single mode VCSEL,” Electron. Lett. 34, 1585–1586 (1998).
[CrossRef]

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
[CrossRef]

Sigg, H. C.

J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg, and H. W. Lehmann, “Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 69, 722–724 (1996).
[CrossRef]

Smith, J. S.

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focussing in vertical-caivity surface-emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

Stoffel, N. G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Vakhshoori, D.

D. Vakhshoori, J. D. Wynn, and G. J. Zydzik, “Top-surface emitting lasers with 1.9 V threshold voltage and the e ect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

van Exter, M. P.

S. F. Pereira, M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 2239–2241 (1998).
[CrossRef]

Vey, J.-L.

C. Degen, J.-L. Vey, W. Elsäßer, P. Schnitzer, and K. J. Ebeling, “Amplitude noise squeezed light from a polarisation single mode VCSEL,” Electron. Lett. 34, 1585–1586 (1998).
[CrossRef]

Von Lehmen, A.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Von Lehmen, A. C.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

Walker, J. D.

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focussing in vertical-caivity surface-emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

Weigl, B.

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
[CrossRef]

K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner, and B. Weigl, “Efficient Vertical Cavity Surface Emitting Laser Diodes for High Bit Rate Optical Data Transmission,” Int. J. Electron. Commun. 50, 316–326 (1996).

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[CrossRef]

Wilk, J.

J. Wilk, R. P. Sarzala, and W. Nakwaski, “The spatial hole burning e ect in gain-guided verticalcavity surface-emitting lasers,” J. Phys. D: Appl. Phys. 31, L11–L15 (1998).
[CrossRef]

Willemsen, M. B.

S. F. Pereira, M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 2239–2241 (1998).
[CrossRef]

Wilson, G. C.

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focussing in vertical-caivity surface-emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

Woerdman, J. P.

S. F. Pereira, M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 2239–2241 (1998).
[CrossRef]

Wynn, J. D.

D. Vakhshoori, J. D. Wynn, and G. J. Zydzik, “Top-surface emitting lasers with 1.9 V threshold voltage and the e ect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

Zhao, Y. G.

Y. G. Zhao and J. McInerny, “Transverse-Mode Control of Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
[CrossRef]

Zydzik, G. J.

D. Vakhshoori, J. D. Wynn, and G. J. Zydzik, “Top-surface emitting lasers with 1.9 V threshold voltage and the e ect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

Appl. Phys. A (1)

W. Nakwaski, “Current spreading and series resistance of proton-implanted vertical-cavity top-surface-emitting lasers,” Appl. Phys. A 61, 123–127 (1995).
[CrossRef]

Appl. Phys. Lett. (7)

D. Vakhshoori, J. D. Wynn, and G. J. Zydzik, “Top-surface emitting lasers with 1.9 V threshold voltage and the e ect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focussing in vertical-caivity surface-emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

K. L. Lear, K. D. Choquette, R. P. Schneider, and S. P. Kilcoyne, “Modal analysis of a small surface emitting laser with a selectively oxidized waveguide,” Appl. Phys. Lett. 66, 2616–2618 (1995).
[CrossRef]

D. L. Huaffaker, D. G. Deppe, and T. J. Rogers, “Transverse mode behaviour in native-oxidede-defined low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 1611–1613 (1994).
[CrossRef]

J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg, and H. W. Lehmann, “Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 69, 722–724 (1996).
[CrossRef]

S. F. Pereira, M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 2239–2241 (1998).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Electron. Lett. (2)

C. Degen, J.-L. Vey, W. Elsäßer, P. Schnitzer, and K. J. Ebeling, “Amplitude noise squeezed light from a polarisation single mode VCSEL,” Electron. Lett. 34, 1585–1586 (1998).
[CrossRef]

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes,” Electron. Lett. 33, 1790–1791 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. G. Zhao and J. McInerny, “Transverse-Mode Control of Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
[CrossRef]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

Int. J. Electron. Commun. (1)

K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner, and B. Weigl, “Efficient Vertical Cavity Surface Emitting Laser Diodes for High Bit Rate Optical Data Transmission,” Int. J. Electron. Commun. 50, 316–326 (1996).

J. Appl. Phys. (1)

I. Hörsch, R. Kusche, O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

J. Wilk, R. P. Sarzala, and W. Nakwaski, “The spatial hole burning e ect in gain-guided verticalcavity surface-emitting lasers,” J. Phys. D: Appl. Phys. 31, L11–L15 (1998).
[CrossRef]

Opt. Commun. (1)

W. Nakwaski and R. P. Sarzala, “Transverse modes in gain-guided vertical-cavity surface-emitting lasers,” Opt. Commun. 148, 63–69 (1998).
[CrossRef]

Other (1)

H. Li, T. L. Lucas, J. G. McInerny, and R. A. Morgan, “Transverse Modes and Patterns of Electrically Pumped Vertical-cavity surface-emitting Semiconductor Lasers,” Chaos, Solitons & Fractals4 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Figure 1.
Figure 1.

Experimental setup

Figure 2.
Figure 2.

Optical power vs. injection current for VCSELs of 6µm (a) and 11µm (b) aperture diameter

Figure 3.
Figure 3.

Nearfield images of the 6µm VCSEL at injection currents of 3.0mA (a), 6.2mA (b), 14.7mA (c), and 18mA (d)

Figure 4.
Figure 4.

Transverse distribution of the laser intensity at λ≈800nm (black curve), spontaneous emission at λ≈770nm (red curve), and spontaneous emission at λ≈830nm (green curve) of a 6µm VCSEL for injection currents I=3mA (a), I=6mA (b), I=15mA (c), and I=18mA (d)

Figure 5.
Figure 5.

Nearfield images of the 11µm VCSEL at injection currents of 8.8mA (a), 15.5mA (b), 23.0mA (c) and 29.9mA (d)

Figure 6.
Figure 6.

Transvere distribution of the optical laser field at λ≈ 800nm (black), spontaneous emission at λ≈ 770nm (red), and spontaneous emission at λ≈ 830nm (green) of a 11µm VCSEL for injection currents I=9mA (a), I=15mA (b), I=24mA (c), and I=30mA (d)

Metrics