Abstract

We present experimental studies on the transverse mode emission behaviour of oxide-conned Vertical Cavity Surface Emitting Lasers (VCSELs). VCSELs with aperture diameters of 6µm and 11µm exhibit a wide variety of emission patterns from low order Hermite-Gaussian modes to high order Laguerre-Gaussian modes. We obtain detailed information about the spatial gain distribution by recording spontaneous emission intensity profiles during lasing operation. We conclude from these profiles, that the spatial carrier distribution is primarily governed by the influence of pump induced current spreading and is only secondarily influenced by further effects such as spatial hole burning, and thermal gradients in the laser. The combination of these mechanisms causes a strong tendency towards the emission of high order transverse modes.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner and B. Weigl, "Efficient Vertical Cavity Surface Emitting Laser Diodes for High Bit Rate Optical Data Transmission," Int. J. Electron. Commun. 50, 316-326 (1996).
  2. C. Degen, J.-L. Vey, W. Elsaber, P. Schnitzer and K. J. Ebeling, "Amplitude noise squeezed light from a polarisation single mode VCSEL," Electron. Lett. 34, 1585-1586 (1998).
    [CrossRef]
  3. C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
    [CrossRef]
  4. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez and N. G. Stoffel, "Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
    [CrossRef]
  5. I. Horsch, R. Kusche, O. Marti, B. Weigl and K. J. Ebeling, "Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers," J. Appl. Phys. 79, 3831-3834 (1996).
    [CrossRef]
  6. H. Li, T. L. Lucas, J. G. McInerny and R. A. Morgan, "Transverse Modes and Patterns of Electrically Pumped Vertical-cavity surface-emitting Semiconductor Lasers," Chaos, Solitons & Fractals 4 (1994).
    [CrossRef]
  7. Y. G. Zhao and J. McInerny, "Transverse-Mode Control of Vertical-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 32, 1950-1958 (1996).
    [CrossRef]
  8. W. Nakwaski and R. P. Sarzala, "Transverse modes in gain-guided vertical-cavity surface- emitting lasers," Opt. Commun. 148, 63-69 (1998).
    [CrossRef]
  9. J. Wilk, R. P. Sarzala and W. Nakwaski, "The spatial hole burning effect in gain-guided vertical- cavity surface-emitting lasers," J. Phys. D: Appl. Phys. 31, L11-L15 (1998).
    [CrossRef]
  10. K. L. Lear, K. D. Choquette, R. P. Schneider, Jr. and S. P. Kilcoyne, "Modal analysis of a small surface emitting laser with a selectively oxidized waveguide," Appl. Phys. Lett. 66, 2616-2618 (1995).
    [CrossRef]
  11. D. L. Huffaker, D. G. Deppe and T. J. Rogers, "Transverse mode behaviour in native-oxide- defined low threshold vertical-cavity lasers," Appl. Phys. Lett. 65, 1611-1613 (1994).
    [CrossRef]
  12. C. Jung, R. Jager, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Muller and K. J. Ebeling, "4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes," Electron. Lett. 33, 1790-1791 (1997).
    [CrossRef]
  13. J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg and H. W. Lehmann, "Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical cavity surface emitting lasers," Appl. Phys. Lett. 69, 722-724 (1996).
    [CrossRef]
  14. S. F. Pereira, M. B. Willemsen, M. P. van Exter and J. P. Woerdman, "Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 2239-2241 (1998).
    [CrossRef]
  15. W. Nakwaski, "Current spreading and series resistance of proton-implanted vertical-cavity top- surface-emitting lasers," Appl. Phys. A 61, 123-127 (1995).
    [CrossRef]
  16. D. Vakhshoori, J. D. Wynn and G. J. Zydzik, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
    [CrossRef]
  17. G. C. Wilson, D. M. Kuchta, J. D. Walker and J. S. Smith, "Spatial hole burning and self- focussing in vertical-caivity surface-emitting laser diodes," Appl. Phys. Lett. 64, 542-544 (1994).
    [CrossRef]

Other (17)

K. J. Ebeling, U. Fiedler, R. Michalzik, G. Reiner and B. Weigl, "Efficient Vertical Cavity Surface Emitting Laser Diodes for High Bit Rate Optical Data Transmission," Int. J. Electron. Commun. 50, 316-326 (1996).

C. Degen, J.-L. Vey, W. Elsaber, P. Schnitzer and K. J. Ebeling, "Amplitude noise squeezed light from a polarisation single mode VCSEL," Electron. Lett. 34, 1585-1586 (1998).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers," Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez and N. G. Stoffel, "Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

I. Horsch, R. Kusche, O. Marti, B. Weigl and K. J. Ebeling, "Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers," J. Appl. Phys. 79, 3831-3834 (1996).
[CrossRef]

H. Li, T. L. Lucas, J. G. McInerny and R. A. Morgan, "Transverse Modes and Patterns of Electrically Pumped Vertical-cavity surface-emitting Semiconductor Lasers," Chaos, Solitons & Fractals 4 (1994).
[CrossRef]

Y. G. Zhao and J. McInerny, "Transverse-Mode Control of Vertical-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 32, 1950-1958 (1996).
[CrossRef]

W. Nakwaski and R. P. Sarzala, "Transverse modes in gain-guided vertical-cavity surface- emitting lasers," Opt. Commun. 148, 63-69 (1998).
[CrossRef]

J. Wilk, R. P. Sarzala and W. Nakwaski, "The spatial hole burning effect in gain-guided vertical- cavity surface-emitting lasers," J. Phys. D: Appl. Phys. 31, L11-L15 (1998).
[CrossRef]

K. L. Lear, K. D. Choquette, R. P. Schneider, Jr. and S. P. Kilcoyne, "Modal analysis of a small surface emitting laser with a selectively oxidized waveguide," Appl. Phys. Lett. 66, 2616-2618 (1995).
[CrossRef]

D. L. Huffaker, D. G. Deppe and T. J. Rogers, "Transverse mode behaviour in native-oxide- defined low threshold vertical-cavity lasers," Appl. Phys. Lett. 65, 1611-1613 (1994).
[CrossRef]

C. Jung, R. Jager, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Muller and K. J. Ebeling, "4.8mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes," Electron. Lett. 33, 1790-1791 (1997).
[CrossRef]

J. E. Epler, S. Gehrsitz, K. H. Gulden, M. Moser, H. C. Sigg and H. W. Lehmann, "Mode behaviour and high resolution spectra of circularly-symmetric GaAs-AlGaAs air-post vertical cavity surface emitting lasers," Appl. Phys. Lett. 69, 722-724 (1996).
[CrossRef]

S. F. Pereira, M. B. Willemsen, M. P. van Exter and J. P. Woerdman, "Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 2239-2241 (1998).
[CrossRef]

W. Nakwaski, "Current spreading and series resistance of proton-implanted vertical-cavity top- surface-emitting lasers," Appl. Phys. A 61, 123-127 (1995).
[CrossRef]

D. Vakhshoori, J. D. Wynn and G. J. Zydzik, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[CrossRef]

G. C. Wilson, D. M. Kuchta, J. D. Walker and J. S. Smith, "Spatial hole burning and self- focussing in vertical-caivity surface-emitting laser diodes," Appl. Phys. Lett. 64, 542-544 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Figure 1.
Figure 1.

Experimental setup

Figure 2.
Figure 2.

Optical power vs. injection current for VCSELs of 6µm (a) and 11µm (b) aperture diameter

Figure 3.
Figure 3.

Nearfield images of the 6µm VCSEL at injection currents of 3.0mA (a), 6.2mA (b), 14.7mA (c), and 18mA (d)

Figure 4.
Figure 4.

Transverse distribution of the laser intensity at λ≈800nm (black curve), spontaneous emission at λ≈770nm (red curve), and spontaneous emission at λ≈830nm (green curve) of a 6µm VCSEL for injection currents I=3mA (a), I=6mA (b), I=15mA (c), and I=18mA (d)

Figure 5.
Figure 5.

Nearfield images of the 11µm VCSEL at injection currents of 8.8mA (a), 15.5mA (b), 23.0mA (c) and 29.9mA (d)

Figure 6.
Figure 6.

Transvere distribution of the optical laser field at λ≈ 800nm (black), spontaneous emission at λ≈ 770nm (red), and spontaneous emission at λ≈ 830nm (green) of a 11µm VCSEL for injection currents I=9mA (a), I=15mA (b), I=24mA (c), and I=30mA (d)

Metrics