Abstract

A partially and a highly antireflection coated broad area laser are operated in an external cavity Fourier-optical 4f set-up to experimentally investigate transverse mode selection. The external cavity consists of a lens and a spatial frequency filter. Running freely the lasers show non-stationary filamentation. Placing the spatial filter unit directly onto the optical axis gives cw fundamental mode operation and a transverse shift of the spatial filter in the plane of the active region allows for selective excitation of higher order modes.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Marciante and G. P. Agrawal, “Nonlinear mechanism of filamentation in broad area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
    [Crossref]
  2. O. Hess, S. W. Koch, and J. V. Moloney, “Filamentation and beam propagation in broad-area semiconductor lasers,” IEEE J. Quantum Electron. 31, 35–43 (1995).
    [Crossref]
  3. C. Simmendinger, M. Münkel, and O. Hess, “Controlling complex temporal and spatio-temporal dynamics in semiconductor lasers,” Caos, Solitons & Fractals 10, 851–864 (1999).
  4. J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
    [Crossref]
  5. A. Hardy, W. Streifer, and M. Osinski, “Influence of external mirror on antireflection-coated phased-array semiconductor lasers,” Appl. Phys. Lett. 49, 185–187 (1986).
    [Crossref]
  6. C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
    [Crossref]
  7. J. Salzman, T. Venkatesan, R. Lang, M. Mittelstein, and A. Yariv, “Unstable resonator cavity semiconductor lasers,” Appl. Phys. Lett. 46, 218–220 (1985).
    [Crossref]
  8. K. Shigihara, Y. Nagai, S. Kakimoto, and K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1689 (1994).
    [Crossref]
  9. J. P. Hohimer, G. R. Hadley, and A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
    [Crossref]
  10. D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, “Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugated mirror,” IEEE J. Quantum Electron. 33, 838–844 (1997).
    [Crossref]
  11. Y. Champagne, S. Mailhot, and N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
    [Crossref]
  12. S. Wolff, D. Messerschmidt, H. Fouckhardt, C. Simmendinger, and O. Hess, “Intracavity stabilization of broad area lasers by structured delayed optical feedback,” submitted to J. Opt. Soc. Am. B (1999).
  13. A. E. Siegman, An introduction to lasers and masers (McGraw-Hill, New York, 1971), Chap. 8.
  14. POL 2000 series, Polaroid Corp., Norwood, MA 02062.
  15. AR-2360-C, SDL, Inc., San Jose, CA 95134.

1999 (1)

C. Simmendinger, M. Münkel, and O. Hess, “Controlling complex temporal and spatio-temporal dynamics in semiconductor lasers,” Caos, Solitons & Fractals 10, 851–864 (1999).

1997 (1)

D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, “Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugated mirror,” IEEE J. Quantum Electron. 33, 838–844 (1997).
[Crossref]

1996 (1)

J. R. Marciante and G. P. Agrawal, “Nonlinear mechanism of filamentation in broad area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
[Crossref]

1995 (2)

O. Hess, S. W. Koch, and J. V. Moloney, “Filamentation and beam propagation in broad-area semiconductor lasers,” IEEE J. Quantum Electron. 31, 35–43 (1995).
[Crossref]

Y. Champagne, S. Mailhot, and N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[Crossref]

1994 (1)

K. Shigihara, Y. Nagai, S. Kakimoto, and K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1689 (1994).
[Crossref]

1988 (1)

J. P. Hohimer, G. R. Hadley, and A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
[Crossref]

1986 (2)

A. Hardy, W. Streifer, and M. Osinski, “Influence of external mirror on antireflection-coated phased-array semiconductor lasers,” Appl. Phys. Lett. 49, 185–187 (1986).
[Crossref]

C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[Crossref]

1985 (2)

J. Salzman, T. Venkatesan, R. Lang, M. Mittelstein, and A. Yariv, “Unstable resonator cavity semiconductor lasers,” Appl. Phys. Lett. 46, 218–220 (1985).
[Crossref]

J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[Crossref]

Agrawal, G. P.

D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, “Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugated mirror,” IEEE J. Quantum Electron. 33, 838–844 (1997).
[Crossref]

J. R. Marciante and G. P. Agrawal, “Nonlinear mechanism of filamentation in broad area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
[Crossref]

Burnham, R. D.

C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[Crossref]

J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[Crossref]

Champagne, Y.

Y. Champagne, S. Mailhot, and N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[Crossref]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[Crossref]

Cross, P. S.

J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[Crossref]

DeTienne, D. H.

D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, “Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugated mirror,” IEEE J. Quantum Electron. 33, 838–844 (1997).
[Crossref]

Dienes, A.

C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[Crossref]

Fouckhardt, H.

S. Wolff, D. Messerschmidt, H. Fouckhardt, C. Simmendinger, and O. Hess, “Intracavity stabilization of broad area lasers by structured delayed optical feedback,” submitted to J. Opt. Soc. Am. B (1999).

Gray, G. R.

D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, “Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugated mirror,” IEEE J. Quantum Electron. 33, 838–844 (1997).
[Crossref]

Hadley, G. R.

J. P. Hohimer, G. R. Hadley, and A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
[Crossref]

Hardy, A.

A. Hardy, W. Streifer, and M. Osinski, “Influence of external mirror on antireflection-coated phased-array semiconductor lasers,” Appl. Phys. Lett. 49, 185–187 (1986).
[Crossref]

Hess, O.

C. Simmendinger, M. Münkel, and O. Hess, “Controlling complex temporal and spatio-temporal dynamics in semiconductor lasers,” Caos, Solitons & Fractals 10, 851–864 (1999).

O. Hess, S. W. Koch, and J. V. Moloney, “Filamentation and beam propagation in broad-area semiconductor lasers,” IEEE J. Quantum Electron. 31, 35–43 (1995).
[Crossref]

S. Wolff, D. Messerschmidt, H. Fouckhardt, C. Simmendinger, and O. Hess, “Intracavity stabilization of broad area lasers by structured delayed optical feedback,” submitted to J. Opt. Soc. Am. B (1999).

Hohimer, J. P.

J. P. Hohimer, G. R. Hadley, and A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
[Crossref]

Ikeda, K.

K. Shigihara, Y. Nagai, S. Kakimoto, and K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1689 (1994).
[Crossref]

Kakimoto, S.

K. Shigihara, Y. Nagai, S. Kakimoto, and K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1689 (1994).
[Crossref]

Koch, S. W.

O. Hess, S. W. Koch, and J. V. Moloney, “Filamentation and beam propagation in broad-area semiconductor lasers,” IEEE J. Quantum Electron. 31, 35–43 (1995).
[Crossref]

Lang, R.

J. Salzman, T. Venkatesan, R. Lang, M. Mittelstein, and A. Yariv, “Unstable resonator cavity semiconductor lasers,” Appl. Phys. Lett. 46, 218–220 (1985).
[Crossref]

Lenstra, D.

D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, “Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugated mirror,” IEEE J. Quantum Electron. 33, 838–844 (1997).
[Crossref]

Mailhot, S.

Y. Champagne, S. Mailhot, and N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[Crossref]

Marciante, J. R.

J. R. Marciante and G. P. Agrawal, “Nonlinear mechanism of filamentation in broad area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
[Crossref]

McCarthy, N.

Y. Champagne, S. Mailhot, and N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[Crossref]

Messerschmidt, D.

S. Wolff, D. Messerschmidt, H. Fouckhardt, C. Simmendinger, and O. Hess, “Intracavity stabilization of broad area lasers by structured delayed optical feedback,” submitted to J. Opt. Soc. Am. B (1999).

Mittelstein, M.

J. Salzman, T. Venkatesan, R. Lang, M. Mittelstein, and A. Yariv, “Unstable resonator cavity semiconductor lasers,” Appl. Phys. Lett. 46, 218–220 (1985).
[Crossref]

Moloney, J. V.

O. Hess, S. W. Koch, and J. V. Moloney, “Filamentation and beam propagation in broad-area semiconductor lasers,” IEEE J. Quantum Electron. 31, 35–43 (1995).
[Crossref]

Münkel, M.

C. Simmendinger, M. Münkel, and O. Hess, “Controlling complex temporal and spatio-temporal dynamics in semiconductor lasers,” Caos, Solitons & Fractals 10, 851–864 (1999).

Nagai, Y.

K. Shigihara, Y. Nagai, S. Kakimoto, and K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1689 (1994).
[Crossref]

Osinski, M.

A. Hardy, W. Streifer, and M. Osinski, “Influence of external mirror on antireflection-coated phased-array semiconductor lasers,” Appl. Phys. Lett. 49, 185–187 (1986).
[Crossref]

Owyoung, A.

J. P. Hohimer, G. R. Hadley, and A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
[Crossref]

Salzman, J.

J. Salzman, T. Venkatesan, R. Lang, M. Mittelstein, and A. Yariv, “Unstable resonator cavity semiconductor lasers,” Appl. Phys. Lett. 46, 218–220 (1985).
[Crossref]

Scrifes, D. R.

C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[Crossref]

J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[Crossref]

Shigihara, K.

K. Shigihara, Y. Nagai, S. Kakimoto, and K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1689 (1994).
[Crossref]

Siegman, A. E.

A. E. Siegman, An introduction to lasers and masers (McGraw-Hill, New York, 1971), Chap. 8.

Simmendinger, C.

C. Simmendinger, M. Münkel, and O. Hess, “Controlling complex temporal and spatio-temporal dynamics in semiconductor lasers,” Caos, Solitons & Fractals 10, 851–864 (1999).

S. Wolff, D. Messerschmidt, H. Fouckhardt, C. Simmendinger, and O. Hess, “Intracavity stabilization of broad area lasers by structured delayed optical feedback,” submitted to J. Opt. Soc. Am. B (1999).

Streifer, W.

A. Hardy, W. Streifer, and M. Osinski, “Influence of external mirror on antireflection-coated phased-array semiconductor lasers,” Appl. Phys. Lett. 49, 185–187 (1986).
[Crossref]

C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[Crossref]

J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[Crossref]

Thornten, R. L.

J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[Crossref]

Venkatesan, T.

J. Salzman, T. Venkatesan, R. Lang, M. Mittelstein, and A. Yariv, “Unstable resonator cavity semiconductor lasers,” Appl. Phys. Lett. 46, 218–220 (1985).
[Crossref]

Welch, D. F.

C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[Crossref]

Whinnery, J. R.

C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[Crossref]

Wolff, S.

S. Wolff, D. Messerschmidt, H. Fouckhardt, C. Simmendinger, and O. Hess, “Intracavity stabilization of broad area lasers by structured delayed optical feedback,” submitted to J. Opt. Soc. Am. B (1999).

Yaeli, J.

J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[Crossref]

Yariv, A.

J. Salzman, T. Venkatesan, R. Lang, M. Mittelstein, and A. Yariv, “Unstable resonator cavity semiconductor lasers,” Appl. Phys. Lett. 46, 218–220 (1985).
[Crossref]

Appl. Phys. Lett. (5)

J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[Crossref]

A. Hardy, W. Streifer, and M. Osinski, “Influence of external mirror on antireflection-coated phased-array semiconductor lasers,” Appl. Phys. Lett. 49, 185–187 (1986).
[Crossref]

C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[Crossref]

J. Salzman, T. Venkatesan, R. Lang, M. Mittelstein, and A. Yariv, “Unstable resonator cavity semiconductor lasers,” Appl. Phys. Lett. 46, 218–220 (1985).
[Crossref]

J. P. Hohimer, G. R. Hadley, and A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
[Crossref]

Caos, Solitons & Fractals (1)

C. Simmendinger, M. Münkel, and O. Hess, “Controlling complex temporal and spatio-temporal dynamics in semiconductor lasers,” Caos, Solitons & Fractals 10, 851–864 (1999).

IEEE J. Quantum Electron. (5)

J. R. Marciante and G. P. Agrawal, “Nonlinear mechanism of filamentation in broad area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
[Crossref]

O. Hess, S. W. Koch, and J. V. Moloney, “Filamentation and beam propagation in broad-area semiconductor lasers,” IEEE J. Quantum Electron. 31, 35–43 (1995).
[Crossref]

D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, “Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugated mirror,” IEEE J. Quantum Electron. 33, 838–844 (1997).
[Crossref]

Y. Champagne, S. Mailhot, and N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[Crossref]

K. Shigihara, Y. Nagai, S. Kakimoto, and K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1689 (1994).
[Crossref]

Other (4)

S. Wolff, D. Messerschmidt, H. Fouckhardt, C. Simmendinger, and O. Hess, “Intracavity stabilization of broad area lasers by structured delayed optical feedback,” submitted to J. Opt. Soc. Am. B (1999).

A. E. Siegman, An introduction to lasers and masers (McGraw-Hill, New York, 1971), Chap. 8.

POL 2000 series, Polaroid Corp., Norwood, MA 02062.

AR-2360-C, SDL, Inc., San Jose, CA 95134.

Supplementary Material (1)

» Media 1: MOV (555 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Figure 1.
Figure 1.

4f set-up (2f1+2f2) with 2 lenses for a Fourier-transform and the inverse transform.

Figure 2.
Figure 2.

Top view of the Fourier-optical 4f set-up (2f plus reflection).

Figure 3.
Figure 3.

Measured nearfield (left) and farfield (right) intensity patterns obtained by translating the slit to the right of the optical axis; 655 nm BAL with partial AR coating; slit width: 291 µm, I p =1.025I th .

Figure 4.
Figure 4.

CCD image (655 nm BAL) and corresponding filter position on the optical axis (b=0), horizontal stripes in the farfield are due to interference. For images of higher order modes click on image (movie file size: 555 KB).

Figure 5.
Figure 5.

Selected transverse mode order, characterized by the number of nearfield intensity peaks, with respect to the position of the spatial filter; 655 nm BAL with partial AR coating, I p =1.025I th .

Figure 6.
Figure 6.

Measured nearfield (left) and farfield (right) intensity patterns obtained by translating the spatial filter to the left of the optical axis; 811nm BAL with highly AR coated output facet, slit width: 259 µm, I p =2.1I th .

Figure 7.
Figure 7.

Hybrid integration concept for the 4f set-up; left: top view, right: perspective view.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w = λ f π w 0 ,

Metrics