Abstract

A partially and a highly antireflection coated broad area laser are operated in an external cavity Fourier-optical 4f set-up to experimentally investigate transverse mode selection. The external cavity consists of a lens and a spatial frequency filter. Running freely the lasers show non-stationary filamentation. Placing the spatial filter unit directly onto the optical axis gives cw fundamental mode operation and a transverse shift of the spatial filter in the plane of the active region allows for selective excitation of higher order modes.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. R. Marciante and G. P. Agrawal, "Nonlinear mechanism of filamentation in broad area semiconductor lasers," IEEE J. Quantum Electron. 32, 590-596 (1996).
    [CrossRef]
  2. O. Hess, S. W. Koch and J. V. Moloney, "Filamentation and beam propagation in broad-area semiconductor lasers," IEEE J. Quantum Electron. 31, 35-43 (1995).
    [CrossRef]
  3. C. Simmendinger, M. Munkel and O. Hess, "Controlling complex temporal and spatio-temporal dynamics in semiconductor lasers," Caos, Solitons & Fractals 10, 851-864 (1999).
  4. J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten and R. D. Burnham, "Array mode selection utilizing an external cavity configuration," Appl. Phys. Lett. 47, 89-91 (1985).
    [CrossRef]
  5. A. Hardy, W. Streifer and M. Osinski, "Influence of external mirror on antire ection-coated phased-array semiconductor lasers," Appl. Phys. Lett. 49, 185-187 (1986).
    [CrossRef]
  6. C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes and R. D. Burnham, "Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity," Appl. Phys. Lett. 49, 614-616 (1986).
    [CrossRef]
  7. J. Salzman, T. Venkatesan, R. Lang, M. Mittelstein and A. Yariv, "Unstable resonator cavity semiconductor lasers," Appl. Phys. Lett. 46, 218-220 (1985).
    [CrossRef]
  8. K. Shigihara, Y. Nagai, S. Kakimoto and K. Ikeda, "Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector," IEEE J. Quantum Electron. 30, 1683-1689 (1994).
    [CrossRef]
  9. J. P. Hohimer, G. R. Hadley and A. Owyoung, "Mode control in broad-area diode lasers by thermally induced lateral index tailoring," Appl. Phys. Lett. 52, 260-262 (1988).
    [CrossRef]
  10. D. H. DeTienne, G. R. Gray, G. P. Agrawal and D. Lenstra, "Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugated mirror," IEEE J. Quantum Electron. 33, 838-844 (1997).
    [CrossRef]
  11. Y. Champagne, S. Mailhot and N. McCarthy, "Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with external cavity," IEEE J. Quantum Electron. 31, 795- 810 (1995).
    [CrossRef]
  12. S. Wolff, D. Messerschmidt, H. Fouckhardt, C. Simmendinger and O. Hess, "Intracavity stabilization of broad area lasers by structured delayed optical feedback," submitted to J. Opt. Soc. Am. B (1999).
  13. A. E. Siegman, An introduction to lasers and masers (McGraw-Hill, New York, 1971), Chap. 8.
  14. POL 2000 series, Polaroid Corp., Norwood, MA 02062.
  15. AR-2360-C, SDL, Inc., San Jose, CA 95134.

Other (15)

J. R. Marciante and G. P. Agrawal, "Nonlinear mechanism of filamentation in broad area semiconductor lasers," IEEE J. Quantum Electron. 32, 590-596 (1996).
[CrossRef]

O. Hess, S. W. Koch and J. V. Moloney, "Filamentation and beam propagation in broad-area semiconductor lasers," IEEE J. Quantum Electron. 31, 35-43 (1995).
[CrossRef]

C. Simmendinger, M. Munkel and O. Hess, "Controlling complex temporal and spatio-temporal dynamics in semiconductor lasers," Caos, Solitons & Fractals 10, 851-864 (1999).

J. Yaeli, W. Streifer, D. R. Scrifes, P. S. Cross, R. L. Thornten and R. D. Burnham, "Array mode selection utilizing an external cavity configuration," Appl. Phys. Lett. 47, 89-91 (1985).
[CrossRef]

A. Hardy, W. Streifer and M. Osinski, "Influence of external mirror on antire ection-coated phased-array semiconductor lasers," Appl. Phys. Lett. 49, 185-187 (1986).
[CrossRef]

C. J. Chang-Hasnain, D. F. Welch, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Dienes and R. D. Burnham, "Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity," Appl. Phys. Lett. 49, 614-616 (1986).
[CrossRef]

J. Salzman, T. Venkatesan, R. Lang, M. Mittelstein and A. Yariv, "Unstable resonator cavity semiconductor lasers," Appl. Phys. Lett. 46, 218-220 (1985).
[CrossRef]

K. Shigihara, Y. Nagai, S. Kakimoto and K. Ikeda, "Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector," IEEE J. Quantum Electron. 30, 1683-1689 (1994).
[CrossRef]

J. P. Hohimer, G. R. Hadley and A. Owyoung, "Mode control in broad-area diode lasers by thermally induced lateral index tailoring," Appl. Phys. Lett. 52, 260-262 (1988).
[CrossRef]

D. H. DeTienne, G. R. Gray, G. P. Agrawal and D. Lenstra, "Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugated mirror," IEEE J. Quantum Electron. 33, 838-844 (1997).
[CrossRef]

Y. Champagne, S. Mailhot and N. McCarthy, "Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with external cavity," IEEE J. Quantum Electron. 31, 795- 810 (1995).
[CrossRef]

S. Wolff, D. Messerschmidt, H. Fouckhardt, C. Simmendinger and O. Hess, "Intracavity stabilization of broad area lasers by structured delayed optical feedback," submitted to J. Opt. Soc. Am. B (1999).

A. E. Siegman, An introduction to lasers and masers (McGraw-Hill, New York, 1971), Chap. 8.

POL 2000 series, Polaroid Corp., Norwood, MA 02062.

AR-2360-C, SDL, Inc., San Jose, CA 95134.

Supplementary Material (1)

» Media 1: MOV (555 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Figure 1.
Figure 1.

4f set-up (2f1+2f2) with 2 lenses for a Fourier-transform and the inverse transform.

Figure 2.
Figure 2.

Top view of the Fourier-optical 4f set-up (2f plus reflection).

Figure 3.
Figure 3.

Measured nearfield (left) and farfield (right) intensity patterns obtained by translating the slit to the right of the optical axis; 655 nm BAL with partial AR coating; slit width: 291 µm, I p =1.025I th .

Figure 4.
Figure 4.

CCD image (655 nm BAL) and corresponding filter position on the optical axis (b=0), horizontal stripes in the farfield are due to interference. For images of higher order modes click on image (movie file size: 555 KB).

Figure 5.
Figure 5.

Selected transverse mode order, characterized by the number of nearfield intensity peaks, with respect to the position of the spatial filter; 655 nm BAL with partial AR coating, I p =1.025I th .

Figure 6.
Figure 6.

Measured nearfield (left) and farfield (right) intensity patterns obtained by translating the spatial filter to the left of the optical axis; 811nm BAL with highly AR coated output facet, slit width: 259 µm, I p =2.1I th .

Figure 7.
Figure 7.

Hybrid integration concept for the 4f set-up; left: top view, right: perspective view.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w = λ f π w 0 ,

Metrics