Abstract

We demonstrate that in multi-stage optical parametric amplifiers, spatial and temporal overlap of all products and pump on subsequent passes lead to strongly phase-dependent conversion, which has important consequences for output noise and beam profile characteristics. We verify a simple method to avoid this interferometric process.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.C. Deàk, L.K. Iwaki, and D.D. Dlott, “High-power picosecond mid-infrared optical parametric amplifier for infrared Raman spectroscopy,” Opt. Lett. 22, 1796–1798 (1997).
    [CrossRef]
  2. L. Carrion and J.P. Girardeau-Montaut, “Performance of a new picosecond KTP optical parametric generator and amplifier,” Opt. Commun. 152, 347–350 (1998).
    [CrossRef]
  3. J.Y. Zhang, Z. Xu, Y. Kong, C. Yu, and Y. Wu, “Highly efficient, widely tunable, 10-Hz paramet- ric amplifier pumped by frequency-doubled femtosecond Ti:sapphire laser pulses,” Appl. Opt. 37, 3299–3305 (1998).
    [CrossRef]
  4. F. Seifert, V. Petrov, and F. Noack, “Sub-100-fs optical parametric generator pumped by a high-repetition-rate Ti:sapphire regenerative amplifier system,” Opt. Lett. 19, 837–839 (1994).
    [CrossRef] [PubMed]
  5. M.K. Reed and M.K.S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996).
    [CrossRef]
  6. N. Bloembergen, Nonlinear Optics, (W.A. Benjamin Inc., Reading, Massachusetts, 1965).
  7. R.W. Boyd, Nonlinear Optics, (Academic Press, San Diego, USA, 1992).
  8. A.N. Chudinov, Yu.E. Kapitzky, A.A. Shulginov, and B.Ya. Zel’Dovich, “Interferometric phase measurements of average field cube Eω2E2ω*,” Opt. Quantum Electron. 23, 1055–1060 (1991).
    [CrossRef]
  9. E. Freysz, J. Plantard, R. Gillet, R.M. Rassoul, P. Grelu, and A. Ducasse, “Automatic time delay optimization between the pump and seed pulses of a broadly tunable femtosecond optical parametric amplifier,” Appl. Opt. 37, 2411–2413 (1998).
    [CrossRef]

1998 (3)

1997 (1)

1996 (1)

M.K. Reed and M.K.S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996).
[CrossRef]

1994 (1)

1991 (1)

A.N. Chudinov, Yu.E. Kapitzky, A.A. Shulginov, and B.Ya. Zel’Dovich, “Interferometric phase measurements of average field cube Eω2E2ω*,” Opt. Quantum Electron. 23, 1055–1060 (1991).
[CrossRef]

Bloembergen, N.

N. Bloembergen, Nonlinear Optics, (W.A. Benjamin Inc., Reading, Massachusetts, 1965).

Boyd, R.W.

R.W. Boyd, Nonlinear Optics, (Academic Press, San Diego, USA, 1992).

Carrion, L.

L. Carrion and J.P. Girardeau-Montaut, “Performance of a new picosecond KTP optical parametric generator and amplifier,” Opt. Commun. 152, 347–350 (1998).
[CrossRef]

Chudinov, A.N.

A.N. Chudinov, Yu.E. Kapitzky, A.A. Shulginov, and B.Ya. Zel’Dovich, “Interferometric phase measurements of average field cube Eω2E2ω*,” Opt. Quantum Electron. 23, 1055–1060 (1991).
[CrossRef]

Deàk, J.C.

Dlott, D.D.

Ducasse, A.

Freysz, E.

Gillet, R.

Girardeau-Montaut, J.P.

L. Carrion and J.P. Girardeau-Montaut, “Performance of a new picosecond KTP optical parametric generator and amplifier,” Opt. Commun. 152, 347–350 (1998).
[CrossRef]

Grelu, P.

Iwaki, L.K.

Kapitzky, Yu.E.

A.N. Chudinov, Yu.E. Kapitzky, A.A. Shulginov, and B.Ya. Zel’Dovich, “Interferometric phase measurements of average field cube Eω2E2ω*,” Opt. Quantum Electron. 23, 1055–1060 (1991).
[CrossRef]

Kong, Y.

Noack, F.

Petrov, V.

Plantard, J.

Rassoul, R.M.

Reed, M.K.

M.K. Reed and M.K.S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996).
[CrossRef]

Seifert, F.

Shepard, M.K.S.

M.K. Reed and M.K.S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996).
[CrossRef]

Shulginov, A.A.

A.N. Chudinov, Yu.E. Kapitzky, A.A. Shulginov, and B.Ya. Zel’Dovich, “Interferometric phase measurements of average field cube Eω2E2ω*,” Opt. Quantum Electron. 23, 1055–1060 (1991).
[CrossRef]

Wu, Y.

Xu, Z.

Yu, C.

Zel’Dovich, B.Ya.

A.N. Chudinov, Yu.E. Kapitzky, A.A. Shulginov, and B.Ya. Zel’Dovich, “Interferometric phase measurements of average field cube Eω2E2ω*,” Opt. Quantum Electron. 23, 1055–1060 (1991).
[CrossRef]

Zhang, J.Y.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

M.K. Reed and M.K.S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996).
[CrossRef]

Opt. Commun. (1)

L. Carrion and J.P. Girardeau-Montaut, “Performance of a new picosecond KTP optical parametric generator and amplifier,” Opt. Commun. 152, 347–350 (1998).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A.N. Chudinov, Yu.E. Kapitzky, A.A. Shulginov, and B.Ya. Zel’Dovich, “Interferometric phase measurements of average field cube Eω2E2ω*,” Opt. Quantum Electron. 23, 1055–1060 (1991).
[CrossRef]

Other (2)

N. Bloembergen, Nonlinear Optics, (W.A. Benjamin Inc., Reading, Massachusetts, 1965).

R.W. Boyd, Nonlinear Optics, (Academic Press, San Diego, USA, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1.
Figure 1.

Optical lay-out of OPA9800: Dl1, Dl2- delay lines; Dm1, Dm2- dielectric mirrors; S- 80:20 beamsplitter; WLG- white-light generating crystal; BBO-Beta-Barium Borate crystal; filter- neutral density and long wavelength pass filters; WP-λ/2-waveplate; PBC- polarizing beam cube; D- Ge detector.

Figure 2.
Figure 2.

Average power of signal as a function of second pass delay between pump and midinfrared pulses for various signal wavelengths. Negative delay correspond to early arrival of the pump pulses.

Figure 3.
Figure 3.

Average power of signal as a function of second pass delay, with idler removed after first pass (black) and not removed for 1552 nm (left, purple) and 1345 nm (right, blue).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I s = n s c 2 π [ ( A - s ( 0 ) ) 2 cosh 2 κ L ]
I i = n i c 2 π [ ( ω i ω s ) 2 k s k i ( A - s ( 0 ) ) 2 sinh 2 κ L ]
I s = n s c 2 π [ ( A - a ( L ) ) 2 cosh 2 κ L + ( ω s ω i ) 2 k i k s ( A - i ( L ) ) 2 sinh 2 κ L
+ 2 ω s ω i k i k s A - s ( L ) A - i ( L ) cosh κ L sinh κ L sin ( ϕ s + ϕ i ϕ p ) ]
I i = n i c 2 π [ ( A - i ( L ) ) 2 cosh 2 κ L + ( ω i ω s ) 2 k s k i ( A - s ( L ) ) 2 sinh 2 κ L
+ 2 ω i ω s k s k i A - s ( L ) A - i ( L ) cosh κ L sinh κ L sin ( ϕ s + ϕ i ϕ p ) ]

Metrics