Abstract

We have developed an all-solid-state 5-kHz Ti:sapphire Laser System, which produces 22-fs, 0.2-TW pulses. An average power of 22.2 W is the highest ever obtained in ultrashort laser sources. The serious thermal lensing due to high power pumping in a small area of the Ti:sapphire crystal is controlled successfully by a stable quasi-cavity with two concave mirrors.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Schn�rer, Ch. Spielmann, P. Wobrauschek, C. Streli, N. H. Burnett, C. Kan, K. Ferencz, R. Koppitsch, Z. Cheng, T. Brabec, and F. Krausz, "Coherent 0.5-keV X-Ra Emission from Helium Driven by a Sub-10-fs Laser," Phys. Rev. Lett. 80, 3236-3239 (1998).
    [CrossRef]
  2. M. Schn�rer, Z. Cheng, M. Hentschel, G. Tempea, P. K�lm�n, T. Brabec, and F. Krausz, "Absorption-Limited Generation of Coherent Ultrashort Soft-X-Ray Pulses," Phys Rev. Lett. 83, 722-725 (1999).
    [CrossRef]
  3. Y. Kobayashi T. Sekikawa, Y. Nabekawa, and S. Watanabe, "27-fs extreme ultraviolet pulse generation by high-order harmonics," Opt. Lett. 23, 64-66 (1998).
    [CrossRef]
  4. Y. Nabekawa Y. Kuramoto, T. Togashi, T. Sekikawa, and S. Watanabe, "Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser," Opt. Lett. 23, 1384-1386 (1998).
    [CrossRef]
  5. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  6. Y. Bagnoud and F. Salin, "1.1 Terawatt, kilohertz femtosecond laser," in Conference on Laser and Electro Optics of 1999 OSA Techenical Digest Series (Optical Society of America, Wasington, D. C., 1999), CTuD3, 71-72.
  7. F. Salin, J. Squier, G. Mourou, and G. Vaillancourt, "Multikilohertz Ti : Al2O3 amplifier for high-power femtosecond pulses," Opt. Lett. 16, 1964-1966 (1991).
    [CrossRef] [PubMed]
  8. J. Squier, G. Korn, G. Mourou, G. Vaillancourt, and M. Bouvier, "Amplification of femtosecond pulses at 10-kHz repetition rates in Ti : Al2O3," Opt. Lett. 18, 625-627 (1993).
    [CrossRef] [PubMed]
  9. K. Wynne, G. D. Reid, and M. Hochstrasser, "Regenerative amplification of 30-fs pulses in Ti:sapphire at 5 kHz," Opt. Lett. 19, 895-897 (1994).
    [CrossRef] [PubMed]
  10. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, "100-TW sub-20- fs Ti:sapphire laser system operating at a 10-Hz repetition rate," Opt. Lett. 23, 1468-1470 (1998).
    [CrossRef]
  11. G. Cheriaux, P. Rousseau, F. Salin, and J. P. Chambaret, "Aberration-free stretcher design for ultrashort-pulse amplification," Opt. Lett. 21, 414-416 (1996).
    [CrossRef] [PubMed]
  12. S. Konno, S. Fujikawa, T. Kojima, and K. Yasui, "High brightness 127W green beam generation by intracavity-frequency-doubling of diode pumped Nd:YAG laser," Conference on Laser and Electro Optics of 1999 OSA Techenical Digest Series (Optical Society of America, Wasington, D. C. ,1999), CWG1, 301.
  13. C. P. J. Bart , G. Korn, F. Laksi, C. Rose-Petruck, J. Squier, A. -C. Tien, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, "Regenerative pulse shaping and amplification of ultrabroadban optical pulses," Opt. Lett. 21, 219-221 (1996).
    [CrossRef] [PubMed]
  14. M. E. Innocenizi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
    [CrossRef]
  15. F. Salin, C. L. Blanc, J. Squier, and C. Bart , "Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses," Opt. Lett. 23, 718-720 (1998).
    [CrossRef]
  16. S. Backus, C. G. Durfee III, G. Mourou, H. C. Kaptayn, and M. M. Murnane, "0.2-TW laser system at 1 kHz" Opt. Lett. 22, 1256-1258 (1997).
    [CrossRef] [PubMed]
  17. K. W. DeLong, Rick Trebino, J. Hunter, and W. E. White, "Frequency-resolved optical gating with the use of second-harmonic generation," J. Opt. Soc. Am. B 11 2206-2215 (1994)

Other

M. Schn�rer, Ch. Spielmann, P. Wobrauschek, C. Streli, N. H. Burnett, C. Kan, K. Ferencz, R. Koppitsch, Z. Cheng, T. Brabec, and F. Krausz, "Coherent 0.5-keV X-Ra Emission from Helium Driven by a Sub-10-fs Laser," Phys. Rev. Lett. 80, 3236-3239 (1998).
[CrossRef]

M. Schn�rer, Z. Cheng, M. Hentschel, G. Tempea, P. K�lm�n, T. Brabec, and F. Krausz, "Absorption-Limited Generation of Coherent Ultrashort Soft-X-Ray Pulses," Phys Rev. Lett. 83, 722-725 (1999).
[CrossRef]

Y. Kobayashi T. Sekikawa, Y. Nabekawa, and S. Watanabe, "27-fs extreme ultraviolet pulse generation by high-order harmonics," Opt. Lett. 23, 64-66 (1998).
[CrossRef]

Y. Nabekawa Y. Kuramoto, T. Togashi, T. Sekikawa, and S. Watanabe, "Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser," Opt. Lett. 23, 1384-1386 (1998).
[CrossRef]

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Y. Bagnoud and F. Salin, "1.1 Terawatt, kilohertz femtosecond laser," in Conference on Laser and Electro Optics of 1999 OSA Techenical Digest Series (Optical Society of America, Wasington, D. C., 1999), CTuD3, 71-72.

F. Salin, J. Squier, G. Mourou, and G. Vaillancourt, "Multikilohertz Ti : Al2O3 amplifier for high-power femtosecond pulses," Opt. Lett. 16, 1964-1966 (1991).
[CrossRef] [PubMed]

J. Squier, G. Korn, G. Mourou, G. Vaillancourt, and M. Bouvier, "Amplification of femtosecond pulses at 10-kHz repetition rates in Ti : Al2O3," Opt. Lett. 18, 625-627 (1993).
[CrossRef] [PubMed]

K. Wynne, G. D. Reid, and M. Hochstrasser, "Regenerative amplification of 30-fs pulses in Ti:sapphire at 5 kHz," Opt. Lett. 19, 895-897 (1994).
[CrossRef] [PubMed]

K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, "100-TW sub-20- fs Ti:sapphire laser system operating at a 10-Hz repetition rate," Opt. Lett. 23, 1468-1470 (1998).
[CrossRef]

G. Cheriaux, P. Rousseau, F. Salin, and J. P. Chambaret, "Aberration-free stretcher design for ultrashort-pulse amplification," Opt. Lett. 21, 414-416 (1996).
[CrossRef] [PubMed]

S. Konno, S. Fujikawa, T. Kojima, and K. Yasui, "High brightness 127W green beam generation by intracavity-frequency-doubling of diode pumped Nd:YAG laser," Conference on Laser and Electro Optics of 1999 OSA Techenical Digest Series (Optical Society of America, Wasington, D. C. ,1999), CWG1, 301.

C. P. J. Bart , G. Korn, F. Laksi, C. Rose-Petruck, J. Squier, A. -C. Tien, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, "Regenerative pulse shaping and amplification of ultrabroadban optical pulses," Opt. Lett. 21, 219-221 (1996).
[CrossRef] [PubMed]

M. E. Innocenizi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

F. Salin, C. L. Blanc, J. Squier, and C. Bart , "Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses," Opt. Lett. 23, 718-720 (1998).
[CrossRef]

S. Backus, C. G. Durfee III, G. Mourou, H. C. Kaptayn, and M. M. Murnane, "0.2-TW laser system at 1 kHz" Opt. Lett. 22, 1256-1258 (1997).
[CrossRef] [PubMed]

K. W. DeLong, Rick Trebino, J. Hunter, and W. E. White, "Frequency-resolved optical gating with the use of second-harmonic generation," J. Opt. Soc. Am. B 11 2206-2215 (1994)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the system. : T. F. P., thinfilm polarizers; T. F. P. E., thinfilm polarizer etalon; P. C., Pockels cell; TiS, Ti:sapphires; CC1, concave mirror with a radius of curvature of 0.2 m; CC2, concave mirror with a radius of curvature of 0.3 m; F. R., Faraday rotator; F. I., Faraday isolator; CC3, concave mirrors with radii of curvature of 0.5 m; FM, flat mirrors; Pumping1, Second Harmonic of LD-pumped YAG laser with a power of 56 W; Pumping2, Second Harmonic of LD-pumped YAG laser with a power of 83 W; B. S. beam splitter with 30-% reflection.

Fig. 2.
Fig. 2.

(a)Schematic diagram of the 4-pass amplifier. : CC3, concave mirrors with radii of curvature of 0.5 m; FM, flat mirrors; TiS, Ti:sapphire rod. The red lines indicate the beam path. (b)Picture of the 4-pass and the single-pass amplifier

Fig. 3.
Fig. 3.

Separation of the concave mirrors L cc versus focal length of the thermal lens as a parameter of the amplified beam w 1 at the center of the cavity. The details of the configuration of the cavity is described in the text. Label of the vertical axisis “DCCM” is the abbreviation of “Distance between two concave mirros”.

Fig. 4.
Fig. 4.

Average power of the amplified beam at each pass of 4-pass and single-pass amplifiers.

Fig. 5.
Fig. 5.

Calculated and measured intensity profiles and phases of the compressed pulse. The measured traces were retrieved from SHG FROG, and the calculated ones were derived from the measured spectrum and calculated phase by ray tracing. R. En., retrieved envelope (open circles); C. En., calculated envelope (solid curve); R. Ph., retrieved phase (open squares); C. Ph., calculated phase (dashed curve).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

0 ( α 1 ) ( β 1 ) Δ ( β 1 ) { ( α 1 ) ( β 1 ) 1 } 1 ,

Metrics