Abstract

Current data recall rates from page oriented holographic memories far exceed the ability of electronics toeven read or transmit the data. For database management, we must not only read those data but also query them-computationally, a far more complex task. That task is very severe for electronics. We show here the rudiments of an optical system that can do most of the query operations in parallel in optics, leaving the burden for electronics significantly less. Even here, electronics is the ultimate speed limiter. Nevertheless, we can query data far faster in our optical/electronic system than any purely electronic system.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. N. Vyukhina, I. S. Gibin, V. A. Dombrovsky, S. A. Dombrovsky, B. N. Pankov, E. F. Pen, A. N. Potapov, A. M. Sinyukov, P. E. Tverdokhleb, and V. V. Shelkovnikov, "A review of aspects relating to the improvement of holographic memory technology," Opt. & Laser Tech. 28, 269-276 (1996).
    [CrossRef]
  2. C. Denz, T. Dellwig, J. Lembcke, and T. Tschudi, "Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing," Opt. Lett. 21(4), 278-280 (1996).
    [CrossRef]
  3. T. Baer, "Relational Technology in the land of the giants," Data Management/DBMS Software Magazine 61, Feb. (1996).
  4. "Optimization Methods for Pattern Recognition," in Optical PatternRecognition, Joseph L. Horner & Bahram Javidi, Eds., SPIE Optical Engr. Press, Bellingham, Washington, (1991), J. Shamir, Joseph Rosen, Uri Mahlaband H. J. Caulfield.
  5. P. B. Berra, K.-H. Brenner, W. T. Cathey, H. J. Caulfield, S. H. Lee, and H. Szu, "Optical database/knowledgebase machines," Appl. Opt. 29, 195-205 (1990).
    [CrossRef] [PubMed]
  6. F. R. Beyette, Jr., K. M. Geib, C. M. St. Clair, S. A. Feld, and C. W. Wilmsen, "Optoelectronic Exclusive-Or Using Hybrid Integration of Phototransistors and Vertical Cavity Surface Emitting Lasers," IEEE Photonics Tech. Lett. 5, 1322-1324 (1993).
    [CrossRef]
  7. P. A. Mitkas, L. J. Irakliotis, F. R. Beyette, S. A. Feld, and C. W. Wilmsen, "Optoelectronic data filter for selection and projection," Appl. Opt. 33, 1345-1353 (1994).
    [CrossRef] [PubMed]
  8. A. B. VanderLugt, "Signal Detection by Complex Spatial Filtering," Radar Lab., Rept. No. 4594-22-T, Institute of Science and Technology, The University of Michigan, Ann Arbor (1963).
  9. A. B. VanderLugt, "Signal Detection by Complex Spatial Filtering," IEEE Trans. Inform. Theory IT-10, 139- 145 (1964).
    [CrossRef]
  10. Louri, and J. A. Hatch Jr., "An optical associative parallel processor for high-speed database processing," Computer 27, 65-72, Nov. (1994).
  11. http://www.intel.com/network/performance_brief/pc_bus.htm

Other (11)

N. N. Vyukhina, I. S. Gibin, V. A. Dombrovsky, S. A. Dombrovsky, B. N. Pankov, E. F. Pen, A. N. Potapov, A. M. Sinyukov, P. E. Tverdokhleb, and V. V. Shelkovnikov, "A review of aspects relating to the improvement of holographic memory technology," Opt. & Laser Tech. 28, 269-276 (1996).
[CrossRef]

C. Denz, T. Dellwig, J. Lembcke, and T. Tschudi, "Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing," Opt. Lett. 21(4), 278-280 (1996).
[CrossRef]

T. Baer, "Relational Technology in the land of the giants," Data Management/DBMS Software Magazine 61, Feb. (1996).

"Optimization Methods for Pattern Recognition," in Optical PatternRecognition, Joseph L. Horner & Bahram Javidi, Eds., SPIE Optical Engr. Press, Bellingham, Washington, (1991), J. Shamir, Joseph Rosen, Uri Mahlaband H. J. Caulfield.

P. B. Berra, K.-H. Brenner, W. T. Cathey, H. J. Caulfield, S. H. Lee, and H. Szu, "Optical database/knowledgebase machines," Appl. Opt. 29, 195-205 (1990).
[CrossRef] [PubMed]

F. R. Beyette, Jr., K. M. Geib, C. M. St. Clair, S. A. Feld, and C. W. Wilmsen, "Optoelectronic Exclusive-Or Using Hybrid Integration of Phototransistors and Vertical Cavity Surface Emitting Lasers," IEEE Photonics Tech. Lett. 5, 1322-1324 (1993).
[CrossRef]

P. A. Mitkas, L. J. Irakliotis, F. R. Beyette, S. A. Feld, and C. W. Wilmsen, "Optoelectronic data filter for selection and projection," Appl. Opt. 33, 1345-1353 (1994).
[CrossRef] [PubMed]

A. B. VanderLugt, "Signal Detection by Complex Spatial Filtering," Radar Lab., Rept. No. 4594-22-T, Institute of Science and Technology, The University of Michigan, Ann Arbor (1963).

A. B. VanderLugt, "Signal Detection by Complex Spatial Filtering," IEEE Trans. Inform. Theory IT-10, 139- 145 (1964).
[CrossRef]

Louri, and J. A. Hatch Jr., "An optical associative parallel processor for high-speed database processing," Computer 27, 65-72, Nov. (1994).

http://www.intel.com/network/performance_brief/pc_bus.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The POHM concept is to vary a parameter P and record a hologram of a page with each P. Then when we restore the P value, we recall the corresponding page.

Fig. 2.
Fig. 2.

Selection and readout of pages

Fig. 3.
Fig. 3.

Output Selection

Fig. 4.
Fig. 4.

Pattern Selection

Fig. 5.
Fig. 5.

Optoelectronic data filter

Fig. 6.
Fig. 6.

Optical DBMS for POHMs

Fig. 7.
Fig. 7.

Two physical algorithms for Fourier transforms

Fig. 8.
Fig. 8.

Intersection of data A and B

Fig. 9.
Fig. 9.

A diagram of the optical system. Note that the lens system uses cylindrical lenses for 1-D Fourier transforms. The component required for recording the holograms into the POHM are omitted for clarity.

Tables (2)

Tables Icon

Table 1. Correlator Architectures

Tables Icon

Table 2. Examples of 1-D Hamming codes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F ( u , v ) = [ f ( x , y ) ] = f ( x , y ) e 2 π i ( xu + yv ) dx dy
[ f ( x x 0 , y y 0 ) ] = e 2 π i ( x 0 u + y 0 v ) F ( u , v )

Metrics