Abstract

An off-perpendicular incident arrangement is suggested and tested in AOTF system design to improve the spectrum resolution and angular aperture. A special discussion is given to the “equivalent point design” of Si=56° where the optimum design parameters are reached.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Discussion to the equivalent point realized by the two polarized beams in AOTF system

Bin Xue, Kexin Xu, and Hiroshi Yamamoto
Opt. Express 4(3) 139-146 (1999)

Analysis of the optimum optical incident angle for an imaging acousto-optic tunable filter

Chunguang Zhang, Zhonghua Zhang, Hao Wang, and Yu Yang
Opt. Express 15(19) 11883-11888 (2007)

Accurate design of a noncollinear acousto-optic tunable filter

P. A. Gass and J. R. Sambles
Opt. Lett. 16(6) 429-431 (1991)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Dixon, IEEE. J. Quantum Electron.QE-3, 85 (1967).
    [Crossref]
  2. I. C. Chang, Appl. Phys. Lett.25, 370 (1974).
    [Crossref]
  3. T. Yano and A. Watanabe, Appl. Opt.15, 2250 (1976).
    [Crossref] [PubMed]
  4. Mo Fuqin, Acta Optica Sinica, 6, 446 (1986).
  5. V. M. Epikhin, F. L. Vizen, and L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).
  6. B. Xue, K. Xu, and H. Yamamoto, Opt. Express 4, 139 (1999); http://www.opticsexpress.org/oearchive/source/8525.htm
    [Crossref] [PubMed]

1999 (1)

1987 (1)

V. M. Epikhin, F. L. Vizen, and L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

Chang, I. C.

I. C. Chang, Appl. Phys. Lett.25, 370 (1974).
[Crossref]

Dixon, R. W.

R. W. Dixon, IEEE. J. Quantum Electron.QE-3, 85 (1967).
[Crossref]

Epikhin, V. M.

V. M. Epikhin, F. L. Vizen, and L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

Fuqin, Mo

Mo Fuqin, Acta Optica Sinica, 6, 446 (1986).

Pal’tsev, L. L.

V. M. Epikhin, F. L. Vizen, and L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

Vizen, F. L.

V. M. Epikhin, F. L. Vizen, and L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

Watanabe, A.

T. Yano and A. Watanabe, Appl. Opt.15, 2250 (1976).
[Crossref] [PubMed]

Xu, K.

Xue, B.

Yamamoto, H.

Yano, T.

T. Yano and A. Watanabe, Appl. Opt.15, 2250 (1976).
[Crossref] [PubMed]

Opt. Express (1)

Sov. Phys. Tech. Phys. (1)

V. M. Epikhin, F. L. Vizen, and L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

Other (4)

R. W. Dixon, IEEE. J. Quantum Electron.QE-3, 85 (1967).
[Crossref]

I. C. Chang, Appl. Phys. Lett.25, 370 (1974).
[Crossref]

T. Yano and A. Watanabe, Appl. Opt.15, 2250 (1976).
[Crossref] [PubMed]

Mo Fuqin, Acta Optica Sinica, 6, 446 (1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Beam unevenly narrowed after going through a boundary

Fig. 2.
Fig. 2.

Vector diagram of acouctic-optic reaction

Fig. 3.
Fig. 3.

Cone angle narrowed inside crystal via the off-perpendicular angle with θs=55°.

Fig. 4.
Fig. 4.

Beam with cone angle of 6° narrowed inside the crystal via off-perpendicular angle.

Fig. 5.
Fig. 5.

Crystal diagram (left) and vector diagram (right) of the normal design. Vp and Vg _ the acoustic phase velocity and group velocity.

Fig. 6.
Fig. 6.

Crystal diagram (left) and vector diagram (right) of the improved design. Vp and Vg _ the acoustic phase velocity and group velocity.

Fig. 7.
Fig. 7.

The position differences of the equivalent point via incident surface orientation angle. The differences are compared between acoustic frequency with different optic wavelengths (curve “*” and “+”) And between the acoustic frequency and the acoustic phase match angle (curve “-”).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sin ( θ io θ s ) cos 2 θ io ( 1 δ ) 2 n o 2 + sin 2 θ i0 n o 2 sin θ 1 = 0
sin ( θ ie θ s ) cos 2 θ ie ( 1 + δ ) 2 n o 2 + sin 2 θ ie n e 2 sin θ 1 = 0
tan [ θ aeo θ i λ ] = n ie ( θ i , λ ) sin θ i n do ( θ i , λ ) sin [ θ do ( θ i , λ ) ] n ie ( θ i , λ ) cos θ i n do ( θ i , λ ) cos [ θ do ( θ do θ i , λ ) ]
f aeo ( θ i , λ ) = V a λ o [ n ie 2 ( θ i , λ ) + n do 2 ( θ i , λ ) 2 n ie ( θ i , λ ) n do ( θ i , λ ) cos ( θ do ( θ i , λ ) θ i ) ] 1 2
tan [ θ aoe ( θ i , λ ) ] = n io ( θ i , λ ) sin θ i n de ( θ i , λ ) sin [ θ de ( θ i , λ ) ] n io ( θ i , λ ) cos θ i n de ( θ i , λ ) cos [ θ de ( θ i , λ ) ]
f aoe ( θ i , λ ) = V a λ 0 [ n io 2 ( θ i , λ ) + n de 2 ( θ i , λ ) 2 n io ( θ i , λ ) n de ( θ i , λ ) cos ( θ de ( θ i , λ ) θ i ) ] 1 2

Metrics