Abstract

We have performed non-invasive, real-time optical mapping of the piglet brain during a subcortical injection of autologous blood. The time resolution of the optical maps is 192 ms, thus allowing us to generate a real-time video of the growing subcortical hematoma. The increased absorption at the site of blood injection is accompanied by a decreased absorption at the contralateral brain side. This contralateral decrease in the optical absorption and the corresponding time traces of the cerebral hemoglobin parameters are consistent with a reduced cerebral blood flow caused by the increased intracranial pressure.

© 1999 Optical Society of America

Full Article  |  PDF Article
Related Articles
On-line optical imaging of the human brain with 160-ms temporal resolution

Maria Angela Franceschini, Vlad Toronov, Mattia E. Filiaci, Enrico Gratton, and Sergio Fantini
Opt. Express 6(3) 49-57 (2000)

Coregistration of diffuse optical spectroscopy and magnetic resonance imaging in a rat tumor model

Sean Merritt, Frederic Bevilacqua, Anthony J. Durkin, David J. Cuccia, Ryan Lanning, Bruce J. Tromberg, Gultekin Gulsen, Hon Yu, Jun Wang, and Orhan Nalcioglu
Appl. Opt. 42(16) 2951-2959 (2003)

Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation

Turgut Durduran, Guoqiang Yu, Mark G. Burnett, John A. Detre, Joel H. Greenberg, Jiongjiong Wang, Chao Zhou, and Arjun G. Yodh
Opt. Lett. 29(15) 1766-1768 (2004)

References

  • View by:
  • |
  • |
  • |

  1. See papers in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg, Proc. SPIE3597 (1999).
  2. J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: Spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
    [Crossref] [PubMed]
  3. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [Crossref] [PubMed]
  4. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [Crossref] [PubMed]
  5. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. (submitted).
    [PubMed]
  6. S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
    [Crossref]
  7. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
    [Crossref]
  8. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
    [Crossref] [PubMed]
  9. M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
    [Crossref] [PubMed]
  10. M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini, and S. Fantini, “Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage,” in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, (in press).
  11. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
    [Crossref] [PubMed]
  12. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998).
    [Crossref] [PubMed]
  13. R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
    [Crossref] [PubMed]
  14. S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
    [Crossref] [PubMed]
  15. S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
    [Crossref] [PubMed]
  16. J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
    [Crossref] [PubMed]
  17. Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
    [PubMed]
  18. C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
    [PubMed]

1999 (1)

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

1998 (4)

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998).
[Crossref] [PubMed]

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[Crossref] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

1997 (3)

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

1996 (1)

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[Crossref] [PubMed]

1995 (1)

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[Crossref] [PubMed]

1994 (2)

1991 (1)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

1990 (1)

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: Spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[Crossref] [PubMed]

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Alfano, R. R.

See papers in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg, Proc. SPIE3597 (1999).

Anday, E.

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Barbieri, B.

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

Benaron, D. A.

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[Crossref] [PubMed]

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[Crossref] [PubMed]

Bernarding, J.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Cerussi, A. E.

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

Chance, B.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

See papers in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg, Proc. SPIE3597 (1999).

Cheong, W.-F.

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[Crossref] [PubMed]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Danen, R. M.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[Crossref] [PubMed]

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Dirnagl, U.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Duckworth, J. L.

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[Crossref] [PubMed]

Fantini, S.

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
[Crossref]

M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini, and S. Fantini, “Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage,” in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, (in press).

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. (submitted).
[PubMed]

Franceschini, M. A.

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
[Crossref]

M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini, and S. Fantini, “Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage,” in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, (in press).

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. (submitted).
[PubMed]

Gratton, E.

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
[Crossref]

M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini, and S. Fantini, “Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage,” in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, (in press).

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. (submitted).
[PubMed]

Haida, M.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

Hebden, J. C.

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: Spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[Crossref] [PubMed]

Hintz, S. R.

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[Crossref] [PubMed]

Hirth, C.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Hong, L.

Houten, J. P. van

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[Crossref] [PubMed]

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[Crossref] [PubMed]

Hueber, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. (submitted).
[PubMed]

M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini, and S. Fantini, “Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage,” in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, (in press).

Ito, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[Crossref] [PubMed]

Itoh, Y.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

Kawaguchi, F.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

Koizumi, H.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[Crossref] [PubMed]

Kölzer, J.

Kruger, R. A.

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: Spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[Crossref] [PubMed]

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

Li, C.

Li, X. D.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[Crossref] [PubMed]

Liu, F. W. H.

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[Crossref] [PubMed]

Maier, J. S.

Maki, A.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[Crossref] [PubMed]

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

Maulik, D.

M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini, and S. Fantini, “Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage,” in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, (in press).

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. (submitted).
[PubMed]

Mayanagi, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[Crossref] [PubMed]

Mitic, G.

Mühlnickl, W.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Murray, T.

Nioka, S.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998).
[Crossref] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

Obrig, H.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Otto, J.

Ovetsky, Y.

Paunescu, L. A.

Pidikiti, D.

Plies, E.

Rosenfeld, W.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. (submitted).
[PubMed]

M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini, and S. Fantini, “Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage,” in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, (in press).

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

Shinohara, N.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

Shinohara, Y.

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

Sölkner, G.

Spilman, S.

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[Crossref] [PubMed]

Spilman, S. D.

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[Crossref] [PubMed]

Stankovic, M. R.

M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini, and S. Fantini, “Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage,” in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, (in press).

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. (submitted).
[PubMed]

Stevenson, D. K.

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[Crossref] [PubMed]

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[Crossref] [PubMed]

Stubblefield, P. G.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. (submitted).
[PubMed]

M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini, and S. Fantini, “Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage,” in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, (in press).

Thayer, W. S.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[Crossref] [PubMed]

Thiel, A.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Thomas, R.

Tromberg, B. J.

See papers in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg, Proc. SPIE3597 (1999).

Villringer, A.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Villringer, K.

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Wang, Y.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[Crossref] [PubMed]

Watanabe, E.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[Crossref] [PubMed]

Worden, K.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Yamashita, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[Crossref] [PubMed]

Yodh, A. G.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[Crossref] [PubMed]

Zee, P. van der

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Zhou, S.

Zinth, W.

Adv. Exp. Med. Biol. (2)

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh, and H. Koizumi, “Towards near-infrared imaging of the brain,” Adv. Exp. Med. Biol. 413, 85–89 (1997).
[PubMed]

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickl, H. Obrig, U. Dirnagl, and A. Villringer, “Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,” Adv. Exp. Med. Biol. 413, 139–147 (1997).
[PubMed]

Anal. Biochem. (1)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

Appl. Opt. (2)

J. Biomed. Opt. (1)

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Med. Phys. (2)

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: Spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[Crossref] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[Crossref] [PubMed]

Opt. Express (1)

Pediatr. Res. (2)

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
[Crossref] [PubMed]

Photochem. Photobiol. (2)

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A. G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[Crossref] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361–369 (1998).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Proc. SPIE (1)

M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini, and S. Fantini, “Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage,” in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, (in press).

Other (2)

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. (submitted).
[PubMed]

See papers in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg, Proc. SPIE3597 (1999).

Supplementary Material (1)

» Media 1: MOV (777 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Geometrical arrangement of the source fibers (at 758 and 830 nm) and the detector fibers in the imaging probe (panel (a)) and in the spectroscopy probe (panel (c)) on the piglet head. The injection site at the piglet head is also shown. Panel (b) gives the 2-D backprojection scheme used to generate the optical maps. Pixel size is 0.5×0.5 cm2. The numbers in each pixel (1–8) refer to a source location, while the letters (a,b) refer to a detector location (see panel (a)). For instance, the pixels labeled 8a are determined by the readings of the source-detector pair 8a, whereas the pixels labeled 7,6a are determined by the average of the readings of source-detector pairs 6a and 7a. Note the exchange of the right and left sides in panel (b) (backprojected optical image of the brain) with respect to panels (a) and (c) (top view of the piglet head).

Fig. 2.
Fig. 2.

(a) Baseline optical map of the piglet brain showing the right anterior (RA), left anterior (LA), right posterior (RP), and left posterior (LP) quadrants. (b) Optical map showing the changes in the effective absorption coefficient (Δμ a ) at 830 nm caused by a subcortical injection of 2 cc of autologous blood in the left anterior (LA) quadrant. (c) Initial frame of a real-time video of the subcortical hemorrhage as optically measured non-invasively (brain_map.mov: 777 kB). The superimposed photograph of a slice of the piglet brain gives a qualitative spatial reference for the optical map. The temporal bar indicates the succession of the events during the video. Saline: start of the 0.3 cc saline injection. Blood: start of the continuous injection of 2 cc of autologous blood (the amount of injected blood is updated every 0.5 cc). The quantitative gray-level bar for Δμ a refers to all three panels.

Fig. 3.
Fig. 3.

Time traces of cerebral hemoglobin parameters before, during, and after a 2 cc subcortical saline injection in the contralateral side of the brain (see Fig. 1(c) for the position of the optical probe relative to the injection site). (a) oxy-hemoglobin ([HbO2]), deoxy-hemoglobin ([Hb]), and total hemoglobin (THC) concentrations. (b) Cerebral hemoglobin saturation (Y).

Metrics