Abstract

We have performed non-invasive, real-time optical mapping of the piglet brain during a subcortical injection of autologous blood. The time resolution of the optical maps is 192 ms, thus allowing us to generate a real-time video of the growing subcortical hematoma. The increased absorption at the site of blood injection is accompanied by a decreased absorption at the contralateral brain side. This contralateral decrease in the optical absorption and the corresponding time traces of the cerebral hemoglobin parameters are consistent with a reduced cerebral blood flow caused by the increased intracranial pressure.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. See papers in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano and B. J. Tromberg, Proc. SPIE 3597 (1999).
  2. J. C. Hebden and R. A. Kruger, "Transillumination imaging performance: Spatial resolution simulation studies," Med. Phys. 17, 41-47 (1990).
    [CrossRef] [PubMed]
  3. G. Mitic, J. K”lzer, J. Otto, E. Plies, G. S”lkner and W. Zinth, "Time-gated transillumination of biological tissues and tissuelike phantoms," Appl. Opt. 33, 6699-6710 (1994).
    [CrossRef] [PubMed]
  4. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
    [CrossRef] [PubMed]
  5. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik and M. R. Stankovic, "Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy," Phys. Med. Biol. (submitted).
    [PubMed]
  6. S. Fantini, M. A. Franceschini and E. Gratton, "Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation," J. Opt. Soc. Am. B 11, 2128- 2138 (1994).
    [CrossRef]
  7. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier and E. Gratton, "Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media," Appl. Opt. 37, 7447-7458 (1998).
    [CrossRef]
  8. E. M. Sevick, B. Chance, J. Leigh, S. Nioka and M. Maris, "Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation," Anal. Biochem. 195, 330-351 (1991).
    [CrossRef] [PubMed]
  9. M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance and E. Gratton, "Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption," J. Biomed. Opt. 2, 147-153 (1997).
    [CrossRef] [PubMed]
  10. M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini and S. Fantini, "Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage," in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano and B. Tromberg, eds., Proc. SPIE 3597, (in press).
  11. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
    [CrossRef] [PubMed]
  12. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti and R. Thomas, "A novel method for fast imaging of brain function, non-invasively, with light," Opt. Express 2, 411-423 (1998); http://epubs.osa.org/oearchive/source/4445.htm
    [CrossRef] [PubMed]
  13. R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer and A. G. Yodh, "Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light," Photochem. Photobiol. 67, 33-40 (1998).
    [CrossRef] [PubMed]
  14. S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson and W.-F. Cheong, "Stationary headband for clinical time-of-flight optical imaging at the bedside," Photochem. Photobiol. 68, 361-369 (1998).
    [CrossRef] [PubMed]
  15. S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson and D. A. Benaron, "Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging," Pediatr. Res. 45, 54-59 (1999).
    [CrossRef] [PubMed]
  16. J. P. van Houten, D. A. Benaron, S. Spilman and D. K. Stevenson, "Imaging brain injury using time-resolved near infrared light scanning," Pediatr. Res. 39, 470-476 (1996).
    [CrossRef] [PubMed]
  17. Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh and H. Koizumi, "Towards near-infrared imaging of the brain," Adv. Exp. Med. Biol. 413, 85-89 (1997).
    [PubMed]
  18. C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. M?hlnickl, H. Obrig, U. Dirnagl and A. Villringer, "Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI," Adv. Exp. Med. Biol. 413, 139- 147 (1997).
    [PubMed]

Other (18)

See papers in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano and B. J. Tromberg, Proc. SPIE 3597 (1999).

J. C. Hebden and R. A. Kruger, "Transillumination imaging performance: Spatial resolution simulation studies," Med. Phys. 17, 41-47 (1990).
[CrossRef] [PubMed]

G. Mitic, J. K”lzer, J. Otto, E. Plies, G. S”lkner and W. Zinth, "Time-gated transillumination of biological tissues and tissuelike phantoms," Appl. Opt. 33, 6699-6710 (1994).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik and M. R. Stankovic, "Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy," Phys. Med. Biol. (submitted).
[PubMed]

S. Fantini, M. A. Franceschini and E. Gratton, "Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation," J. Opt. Soc. Am. B 11, 2128- 2138 (1994).
[CrossRef]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier and E. Gratton, "Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media," Appl. Opt. 37, 7447-7458 (1998).
[CrossRef]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka and M. Maris, "Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation," Anal. Biochem. 195, 330-351 (1991).
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. Barbieri, B. Chance and E. Gratton, "Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: Analysis of the effect of water absorption," J. Biomed. Opt. 2, 147-153 (1997).
[CrossRef] [PubMed]

M. R. Stankovic, D. Hueber, D. Maulik, P. G. Stubblefield, W. Rosenfeld, E. Gratton, M. A. Franceschini and S. Fantini, "Real-time optical imaging and spectroscopy of brain ischemia and hemorrhage," in Optical tomography and spectroscopy of tissue III, B. Chance, R. R. Alfano and B. Tromberg, eds., Proc. SPIE 3597, (in press).

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti and R. Thomas, "A novel method for fast imaging of brain function, non-invasively, with light," Opt. Express 2, 411-423 (1998); http://epubs.osa.org/oearchive/source/4445.htm
[CrossRef] [PubMed]

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer and A. G. Yodh, "Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light," Photochem. Photobiol. 67, 33-40 (1998).
[CrossRef] [PubMed]

S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson and W.-F. Cheong, "Stationary headband for clinical time-of-flight optical imaging at the bedside," Photochem. Photobiol. 68, 361-369 (1998).
[CrossRef] [PubMed]

S. R. Hintz, W.-F. Cheong, J. P. van Houten, D. K. Stevenson and D. A. Benaron, "Bedside imaging of intracranial hemorrhage in the neonate using light: Comparison with ultrasound, computed tomography, and magnetic resonance imaging," Pediatr. Res. 45, 54-59 (1999).
[CrossRef] [PubMed]

J. P. van Houten, D. A. Benaron, S. Spilman and D. K. Stevenson, "Imaging brain injury using time-resolved near infrared light scanning," Pediatr. Res. 39, 470-476 (1996).
[CrossRef] [PubMed]

Y. Shinohara, M. Haida, N. Shinohara, F. Kawaguchi, Y. Itoh and H. Koizumi, "Towards near-infrared imaging of the brain," Adv. Exp. Med. Biol. 413, 85-89 (1997).
[PubMed]

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. M?hlnickl, H. Obrig, U. Dirnagl and A. Villringer, "Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI," Adv. Exp. Med. Biol. 413, 139- 147 (1997).
[PubMed]

Supplementary Material (1)

» Media 1: MOV (777 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Geometrical arrangement of the source fibers (at 758 and 830 nm) and the detector fibers in the imaging probe (panel (a)) and in the spectroscopy probe (panel (c)) on the piglet head. The injection site at the piglet head is also shown. Panel (b) gives the 2-D backprojection scheme used to generate the optical maps. Pixel size is 0.5×0.5 cm2. The numbers in each pixel (1–8) refer to a source location, while the letters (a,b) refer to a detector location (see panel (a)). For instance, the pixels labeled 8a are determined by the readings of the source-detector pair 8a, whereas the pixels labeled 7,6a are determined by the average of the readings of source-detector pairs 6a and 7a. Note the exchange of the right and left sides in panel (b) (backprojected optical image of the brain) with respect to panels (a) and (c) (top view of the piglet head).

Fig. 2.
Fig. 2.

(a) Baseline optical map of the piglet brain showing the right anterior (RA), left anterior (LA), right posterior (RP), and left posterior (LP) quadrants. (b) Optical map showing the changes in the effective absorption coefficient (Δμ a ) at 830 nm caused by a subcortical injection of 2 cc of autologous blood in the left anterior (LA) quadrant. (c) Initial frame of a real-time video of the subcortical hemorrhage as optically measured non-invasively (brain_map.mov: 777 kB). The superimposed photograph of a slice of the piglet brain gives a qualitative spatial reference for the optical map. The temporal bar indicates the succession of the events during the video. Saline: start of the 0.3 cc saline injection. Blood: start of the continuous injection of 2 cc of autologous blood (the amount of injected blood is updated every 0.5 cc). The quantitative gray-level bar for Δμ a refers to all three panels.

Fig. 3.
Fig. 3.

Time traces of cerebral hemoglobin parameters before, during, and after a 2 cc subcortical saline injection in the contralateral side of the brain (see Fig. 1(c) for the position of the optical probe relative to the injection site). (a) oxy-hemoglobin ([HbO2]), deoxy-hemoglobin ([Hb]), and total hemoglobin (THC) concentrations. (b) Cerebral hemoglobin saturation (Y).

Metrics