Abstract

Diffuse optical tomography (DOT) can image spatial variations in highly scattering optical media. We have built an inexpensive and portable continuous-wave DOT system containing 18 laser diode sources (9 at 780nm and 9 at 830nm) and 16 silicon detectors, which can acquire 288 independent measurements in less than 4 seconds. These data can then be processed using a variety of imaging algorithms. We first discuss the design of diffuse imaging equipment in general, and then describe our instrument, along with the technical issues that influenced its design. The technical challenges involved in performing DOT over large optode areas are discussed. We also present rat brain measurements following electrical forepaw stimulation using DOT. These results clearly demonstrate the capabilities of DOT and set the stage for advancement to quantitative functional brain imaging.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48, 34-40 (1995).
    [CrossRef]
  2. S. R. Arridge and J. C. Hebden, "Optical Imaging in Medicine: II. Modelling and reconstruction," Phys. Med. Bio. 42, 841-854 (1997).
    [CrossRef]
  3. J. C. Hebden, S. R. Arridge and D. T. Delpy, "Optical imaging in medicine: I. Experimental techniques," Phys. Med. Bio. 42, 825-840 (1997).
    [CrossRef]
  4. P. T. Fox and M. E. Raichle, "Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects," Proc. Natl. Acad. Sci. USA 83, 1140-4 (1986).
    [CrossRef] [PubMed]
  5. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. USA 89, 5675-9 (1992).
    [CrossRef] [PubMed]
  6. S. Ogawa, T. M. Lee, A. R. Kay and D. W. Tank, "Brain magnetic resonance imaging with contrast dependent on blood oxygenation," Proc. Natl. Acad. Sci. USA 87, 9868-72 (1990).
    [CrossRef] [PubMed]
  7. S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. USA 89, 5951-5955 (1992).
    [CrossRef] [PubMed]
  8. R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo and R. Aronson, "MRI-guided optical tomography:prospects and computation for a new imaging method," IEEE Computation Science and Engineering 2, 63-77 (1995).
    [CrossRef]
  9. B. W. Pogue and K. D. Paulsen, "High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-1718 (1998).
    [CrossRef]
  10. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg and K. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997). http://epubs.osa.org/oearchive/source/2827.htm
    [CrossRef] [PubMed]
  11. N. Ramanujam, C. Du, Y. Ma and B. Chance, "Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies," Rev. Sci. Instru. 69, 3042-3054 (1998).
    [CrossRef]
  12. B. Chance, M. Cope, E. Gratton, N. Ramanujam and B. Tromberg, "Phase measurement of light absorption and scattering in human tissues," Rev. Sci. Instru. 689, 3457-3481 (1998).
    [CrossRef]
  13. P. N. den Outer, T. M. Nieuwenhuizen and A. Lagendijk, "Location of objects in multiple-scattering media," J. Opt. Soc. Am. A 10, 1209-1218 (1993).
    [CrossRef]
  14. D. A. Boas, M. A. OLeary, B. Chance and A. G. Yodh, "Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications," Proc. Natl. Acad. Sci. USA 91, 4887- 4891 (1994).
    [CrossRef] [PubMed]
  15. M. S. Patterson, B. Chance and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef] [PubMed]
  16. M. A. OLeary, D. A. Boas, B. Chance and A. G. Yodh, "Refraction of diffuse photon density waves," Phys. Rev. Lett. 69, 2658-2661 (1992).
    [CrossRef]
  17. J. B. Fishkin and E. Gratton, "Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge," J. Opt. Soc. Am. A 10, 127-140 (1993).
    [CrossRef] [PubMed]
  18. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci 20, 435-442 (1997).
    [CrossRef] [PubMed]
  19. G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman and E. Gratton, "Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.," NeuroImage 6, 168-180 (1997).
    [CrossRef] [PubMed]
  20. B. Chance, A. Endla, N. Shoko, Z. Shuoming, H. Long, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti and R. Thomas, "A novel method for fast imaging of brain function, non-invasively, with light," Opt. Express 2, 411- 423 (1998). http://epubs.osa.org/oearchive/source/4445.htm
    [CrossRef] [PubMed]
  21. M. Kohl, U. Lindauer, U. Dirnagl and A. Villringer, "Separation of changes in light scattering and chromophore concentrations during cortical spreading depression in rats," Opt. Lett. 23, 555-557 (1998).
    [CrossRef]
  22. J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen and R. M. Weisskoff, "Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation," MRM 39, 615- 624 (1998).
  23. J. B. Mandeville, J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff and B. R. Rosen, "An MRI Measurement of the Temporal Evolution of Relative CMRO2 During Rat Forepaw Stimulation," Magn. Reson. Med. In Review, (1999).
  24. J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen and J. B. Mandeville, "Investigation of the Early Response to Rat Forepaw Stimulation," Magn. Reson. Med. In Press, (1999).
  25. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  26. M. A. OLeary, D. A. Boas, B. Chance and A. G. Yodh, "Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography," Opt. Lett. 20, 426-428 (1995).
    [CrossRef]

Other

A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48, 34-40 (1995).
[CrossRef]

S. R. Arridge and J. C. Hebden, "Optical Imaging in Medicine: II. Modelling and reconstruction," Phys. Med. Bio. 42, 841-854 (1997).
[CrossRef]

J. C. Hebden, S. R. Arridge and D. T. Delpy, "Optical imaging in medicine: I. Experimental techniques," Phys. Med. Bio. 42, 825-840 (1997).
[CrossRef]

P. T. Fox and M. E. Raichle, "Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects," Proc. Natl. Acad. Sci. USA 83, 1140-4 (1986).
[CrossRef] [PubMed]

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. USA 89, 5675-9 (1992).
[CrossRef] [PubMed]

S. Ogawa, T. M. Lee, A. R. Kay and D. W. Tank, "Brain magnetic resonance imaging with contrast dependent on blood oxygenation," Proc. Natl. Acad. Sci. USA 87, 9868-72 (1990).
[CrossRef] [PubMed]

S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. USA 89, 5951-5955 (1992).
[CrossRef] [PubMed]

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo and R. Aronson, "MRI-guided optical tomography:prospects and computation for a new imaging method," IEEE Computation Science and Engineering 2, 63-77 (1995).
[CrossRef]

B. W. Pogue and K. D. Paulsen, "High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-1718 (1998).
[CrossRef]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg and K. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997). http://epubs.osa.org/oearchive/source/2827.htm
[CrossRef] [PubMed]

N. Ramanujam, C. Du, Y. Ma and B. Chance, "Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies," Rev. Sci. Instru. 69, 3042-3054 (1998).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam and B. Tromberg, "Phase measurement of light absorption and scattering in human tissues," Rev. Sci. Instru. 689, 3457-3481 (1998).
[CrossRef]

P. N. den Outer, T. M. Nieuwenhuizen and A. Lagendijk, "Location of objects in multiple-scattering media," J. Opt. Soc. Am. A 10, 1209-1218 (1993).
[CrossRef]

D. A. Boas, M. A. OLeary, B. Chance and A. G. Yodh, "Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications," Proc. Natl. Acad. Sci. USA 91, 4887- 4891 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
[CrossRef] [PubMed]

M. A. OLeary, D. A. Boas, B. Chance and A. G. Yodh, "Refraction of diffuse photon density waves," Phys. Rev. Lett. 69, 2658-2661 (1992).
[CrossRef]

J. B. Fishkin and E. Gratton, "Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge," J. Opt. Soc. Am. A 10, 127-140 (1993).
[CrossRef] [PubMed]

A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci 20, 435-442 (1997).
[CrossRef] [PubMed]

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman and E. Gratton, "Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.," NeuroImage 6, 168-180 (1997).
[CrossRef] [PubMed]

B. Chance, A. Endla, N. Shoko, Z. Shuoming, H. Long, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti and R. Thomas, "A novel method for fast imaging of brain function, non-invasively, with light," Opt. Express 2, 411- 423 (1998). http://epubs.osa.org/oearchive/source/4445.htm
[CrossRef] [PubMed]

M. Kohl, U. Lindauer, U. Dirnagl and A. Villringer, "Separation of changes in light scattering and chromophore concentrations during cortical spreading depression in rats," Opt. Lett. 23, 555-557 (1998).
[CrossRef]

J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen and R. M. Weisskoff, "Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation," MRM 39, 615- 624 (1998).

J. B. Mandeville, J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff and B. R. Rosen, "An MRI Measurement of the Temporal Evolution of Relative CMRO2 During Rat Forepaw Stimulation," Magn. Reson. Med. In Review, (1999).

J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen and J. B. Mandeville, "Investigation of the Early Response to Rat Forepaw Stimulation," Magn. Reson. Med. In Press, (1999).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

M. A. OLeary, D. A. Boas, B. Chance and A. G. Yodh, "Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography," Opt. Lett. 20, 426-428 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

A block diagram of the prototype DOT imager. All functions, including source and detector selection, are computer-controlled.

Fig. 2.
Fig. 2.

DOT images of rat brain function at the peak response following 45 seconds of electrical forepaw stimulation. The recovery to baseline is shown 50 seconds following cessation of activation. Dark blue represents a change in the absorption coefficient of 0 cm-1 while dark red represents a change of 0.004 cm-1.

Fig 3.
Fig 3.

The schematic diagram of a single detector phase diversity prototype system. A four-channel version was developed to evaluate phase diversity in more complex two-wavelength systems.

Tables (2)

Tables Icon

Table 1. Our performance goals for the prototype DOT imager.

Tables Icon

Table 2. Results of the measurements performed on the prototype DOT imager.

Metrics