Abstract

We introduce two filtering methods for near-field diffuse light diffraction tomography based on the angular spectrum representation. We then combine these filtering techniques with a new method to find the approximate depth of the image heterogeneities. Taken together these ideas improve the fidelity of our projection image reconstructions, provide an interesting three dimensional rendering of the reconstructed volume, and enable us to identify and classify image artifacts that need to be controlled better for tissue applications. The analysis is accomplished using data derived from numerical finite difference simulations with added noise.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48, 34–40 (March 1995).
    [CrossRef]
  2. B. Chance, in Photon Migration in Tissues (Plenum Press, 1989).
  3. B.J Trombeg, L. O. Svaasand, T. Tsay, and R.C.M. Haskell, “Properties of Photon Density Waves in Multiple-Scattering Media,” Appl. Opt. 32, 607 (1993).
    [CrossRef]
  4. M. A. O’Leary, D. A . Boas, B. Chance, and A.G. Yodh, “Experimental Images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef]
  5. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M.S. Patterson, “Optical Image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  6. Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions using a born iterative mehod,” J. Opt. Soc. Am. A 14, 325–342 (1997).
    [CrossRef]
  7. M. O’Leary, “Imaging with Diffuse Photon Density Waves,” in PhD Thesis (Dept. Physics & Astronomy, U. of Pennsylvania, May 1996) .
  8. M. S Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance And Transmittance for the Non-Invasive Measurement of Tissue Optical Properties,” Appl. Opt. 28, 2331 (1989).
    [CrossRef] [PubMed]
  9. S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, ed. G. Muller, B. Chance, Rl. Alfano, S. Arridge, J. Beuthan, E. Gratton, M Kaschke, B. Masters, S. Svanberg, and P. van der Zee, Proc SPIE IS11, 35–64 (1993).
  10. D. A. Benaron, D. C. Ho, S. Spilman, J. P. Van Houten, and D. K. Stevenson, “Tomographic time-of-flight optical imaging device,” Adv. Exp. Med. Biol. 361, 609–617 (1994).
    [CrossRef]
  11. E. Gratton and J. B. Fishkin, “Optical spectroscopy of tissue-like phantoms using photon density waves,” Comments on Cell. and Mol. Biophys. 8(6), 309–359 (1995).
  12. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10 (1997).
    [CrossRef] [PubMed]
  13. W. Bank and B. Chance, “An Oxidative Effect in metabolic myopathies - diagnosis by noninvasive tissue oximetry,” Ann. Neurol. 36, 830 (1994).
    [CrossRef] [PubMed]
  14. Y. Hoshi and M. Tamura, “Near-Infrared Optical Detection of Sequential Brain Activation in The Prefrontal cortex during mental tasks,” Neuroimage. 5, 292 (1997).
    [CrossRef] [PubMed]
  15. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain functions,” Trends. Neurosci. 20, 435 (1997) .
    [CrossRef] [PubMed]
  16. B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J.A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Roy. Soc. London B. 352, 707 (1997).
    [CrossRef] [PubMed]
  17. BW Pogue and KD Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of apriori magnetic resonance imaging structural information,” Opt. Lett. 23,1716–1718 (1998).
    [CrossRef]
  18. R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A.G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
    [CrossRef] [PubMed]
  19. J.H. Hoogenraad, M.B.van der Mark, S.B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope,” Proc.SPIE / BiOS-97 (SanRemo, 1997) .
  20. S.K. Gayen, M.E. Zevallos, B. B. Das, and R. R. Alfano and “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.
  21. X.D. Li, J. Culver, D. N. Pattanayak, A. G. Yodh, and B. Chance, “Photon Density Wave Imaging With K-Space Spectrum Analysis: clinical studies - background substraction and boundary effects,” Technical Digest Series - CLEO ’98,  6, 88–89 (1998).
  22. S. Fantini, S. A. Walker, M. A. Franceschini, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton. “Assessment of the size, position, and optical properties of breast tumors in vivo by non-invasive optical methods” Appl. Opt.,  37, 1982–1989 (1998).
    [CrossRef]
  23. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
    [CrossRef]
  24. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, and W.W. Mantulin, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149 (1996).
    [CrossRef] [PubMed]
  25. E. Wolf, “Principles and Development of Diffraction Tomography” in Trends in Optics, ed. A. Consortini (Academic Press, San Diego, 1996).
    [CrossRef]
  26. A.J. Devaney, “Diffraction Tomography,” Inv. Meth. In Electromagnetic Imaging, 1107–1135 .
  27. E. Wolf, “Inverse Diffraction and a New Reciprocity Theorem,” J. Opt. Soc. Am. 58, 1568 (1968).
  28. E. Wolf , “Three Dimensional Structure Determination of Semi-Transparent Objects From Holographic Data,” Opt. Commun. 1 , 153–156 (1969).
    [CrossRef]
  29. BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium”. Pure Appl Opt , 7, 1161–1180 (1998).
    [CrossRef]
  30. DL Lasocki, CL Matson, and PJ Collins, “Analysis of forward scattering of diffuse photon-density waves in turbid media: a diffraction tomography approach to an analytic solution,” Opt. Lett. 23,558–560 (1998).
    [CrossRef]
  31. D. N. Pattanayak, “Resolution of Optical Images Formed by Diffusion Waves in Highly Scattering Media,” GE Tech. Info. Series 91CRJ3241 (1991).
  32. X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction Tomography for Biomedical Imaging With Diffuse Photon Density Waves,” Opt. Lett. 22, 573–575 (1997).
    [CrossRef] [PubMed]
  33. X.D. Li ,in PhD Thesis (Dept. Physics & Astronomy, U. of Pennsylvania, May 1998).
  34. X.D. Li, D. N. Pattanayak, J. P. Culver, T. Durduran, and A. G. Yodh, “Near-Field Diffraction Tomography with Diffuse Photon Density Waves,” to be published (1998).
  35. X. Cheng and D. Boas, “Diffuse Optical Reflection Tomography Using Continous Wave Illumination,” Opt. Express 3, 118–123 (1998), http://epubs.osa.org/oearchive/source/5663.htm.
    [CrossRef] [PubMed]
  36. J. C. Schotland, “Near-field Inverse Scattering: Microscopy to Tomography,” SPIE3597 (1999).
  37. C. L. Matson, N. Clark, L. McMackin, and J. S. Fender, “Three-dimensional Tumor Localization in Thick Tissue with The Use of Diffuse Photon-Density Waves,” Appl. Opt. 36, 214–219 (1997).
    [CrossRef] [PubMed]
  38. C. L. Matson, “A Diffraction Tomographic Model Of The Forward Problem Using Diffuse Photon Density Waves,” Opt. Express 1, 6–11 (1997), http://epubs.osa.org/oearchive/source/1884.htm.
    [CrossRef] [PubMed]
  39. S. J. Norton and T. Vo-Dinh, “Diffraction Tomographic Imaging With Photon Density Waves: an Explicit Solution,” J. Opt. Soc. Am. A 15, 2670–2677 (1998).
    [CrossRef]
  40. J. C. Schotland, “Continous Wave Diffusion Imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
    [CrossRef]
  41. T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).
  42. J. Ripoll and M. Nieto-Vesperinas, “Reflection and Transmission Coefficients of Diffuse Photon Density Waves,” in press.
  43. J. Ripoll and M. Nieto-Vesperinas, “Spatial Resolution of Diffuse Photon Density Waves,”to be published in J. Opt. Soc. Am.A (1999).
  44. C. L. Matson, “Resolution, Linear Filtering , and Positivity,” J. Opt. Soc. Am. A 15, 33–41 (1998).
    [CrossRef]
  45. F. J. Harris, “On The Use of Windows For Harmonic Analysis with the Discrete Fourier Transform,” Proc. Of IEEE 66, 51–83 (1978).
    [CrossRef]
  46. A. Kak and M. Slaney, in Principles of Computerized Tomographic Imaging ( IEEE Press, New York, 1988).
  47. A.J. Devaney, “Linearised Inverse Scattering in Attenuating Media,” Inv. Probs. 3, 389–397 (1987).
    [CrossRef]
  48. A. J. Devaney, “Reconstructive Tomography With Diffracting Wavefields,” Inv. Probl. 2, 161–183 (1986).
    [CrossRef]
  49. Essentially we assume that the scattering contrast (δμ′s) is slowly varying. For a detailed description we refer to [33] and [34].
  50. A.J. Banos, in Dipole Radiation In the Presence of a Conducting Half-Space (Pergamon Press, New York, 1966).
  51. J. W. Goodman, in Introduction To Fourier Optics, (McGraw-Hill, San Fransisco , 1968).
  52. We are aware of a similar normalization scheme by Hanli Liu and her collaborators ( private communications SPIE Jan 1999).

1998 (9)

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A.G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

X.D. Li, J. Culver, D. N. Pattanayak, A. G. Yodh, and B. Chance, “Photon Density Wave Imaging With K-Space Spectrum Analysis: clinical studies - background substraction and boundary effects,” Technical Digest Series - CLEO ’98,  6, 88–89 (1998).

BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium”. Pure Appl Opt , 7, 1161–1180 (1998).
[CrossRef]

C. L. Matson, “Resolution, Linear Filtering , and Positivity,” J. Opt. Soc. Am. A 15, 33–41 (1998).
[CrossRef]

S. J. Norton and T. Vo-Dinh, “Diffraction Tomographic Imaging With Photon Density Waves: an Explicit Solution,” J. Opt. Soc. Am. A 15, 2670–2677 (1998).
[CrossRef]

DL Lasocki, CL Matson, and PJ Collins, “Analysis of forward scattering of diffuse photon-density waves in turbid media: a diffraction tomography approach to an analytic solution,” Opt. Lett. 23,558–560 (1998).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton. “Assessment of the size, position, and optical properties of breast tumors in vivo by non-invasive optical methods” Appl. Opt.,  37, 1982–1989 (1998).
[CrossRef]

BW Pogue and KD Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of apriori magnetic resonance imaging structural information,” Opt. Lett. 23,1716–1718 (1998).
[CrossRef]

X. Cheng and D. Boas, “Diffuse Optical Reflection Tomography Using Continous Wave Illumination,” Opt. Express 3, 118–123 (1998), http://epubs.osa.org/oearchive/source/5663.htm.
[CrossRef] [PubMed]

1997 (10)

C. L. Matson, “A Diffraction Tomographic Model Of The Forward Problem Using Diffuse Photon Density Waves,” Opt. Express 1, 6–11 (1997), http://epubs.osa.org/oearchive/source/1884.htm.
[CrossRef] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10 (1997).
[CrossRef] [PubMed]

C. L. Matson, N. Clark, L. McMackin, and J. S. Fender, “Three-dimensional Tumor Localization in Thick Tissue with The Use of Diffuse Photon-Density Waves,” Appl. Opt. 36, 214–219 (1997).
[CrossRef] [PubMed]

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction Tomography for Biomedical Imaging With Diffuse Photon Density Waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

J. C. Schotland, “Continous Wave Diffusion Imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
[CrossRef]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions using a born iterative mehod,” J. Opt. Soc. Am. A 14, 325–342 (1997).
[CrossRef]

Y. Hoshi and M. Tamura, “Near-Infrared Optical Detection of Sequential Brain Activation in The Prefrontal cortex during mental tasks,” Neuroimage. 5, 292 (1997).
[CrossRef] [PubMed]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain functions,” Trends. Neurosci. 20, 435 (1997) .
[CrossRef] [PubMed]

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J.A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Roy. Soc. London B. 352, 707 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

1996 (2)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, and W.W. Mantulin, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149 (1996).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M.S. Patterson, “Optical Image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

1995 (3)

M. A. O’Leary, D. A . Boas, B. Chance, and A.G. Yodh, “Experimental Images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48, 34–40 (March 1995).
[CrossRef]

E. Gratton and J. B. Fishkin, “Optical spectroscopy of tissue-like phantoms using photon density waves,” Comments on Cell. and Mol. Biophys. 8(6), 309–359 (1995).

1994 (2)

W. Bank and B. Chance, “An Oxidative Effect in metabolic myopathies - diagnosis by noninvasive tissue oximetry,” Ann. Neurol. 36, 830 (1994).
[CrossRef] [PubMed]

D. A. Benaron, D. C. Ho, S. Spilman, J. P. Van Houten, and D. K. Stevenson, “Tomographic time-of-flight optical imaging device,” Adv. Exp. Med. Biol. 361, 609–617 (1994).
[CrossRef]

1993 (2)

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, ed. G. Muller, B. Chance, Rl. Alfano, S. Arridge, J. Beuthan, E. Gratton, M Kaschke, B. Masters, S. Svanberg, and P. van der Zee, Proc SPIE IS11, 35–64 (1993).

B.J Trombeg, L. O. Svaasand, T. Tsay, and R.C.M. Haskell, “Properties of Photon Density Waves in Multiple-Scattering Media,” Appl. Opt. 32, 607 (1993).
[CrossRef]

1991 (1)

D. N. Pattanayak, “Resolution of Optical Images Formed by Diffusion Waves in Highly Scattering Media,” GE Tech. Info. Series 91CRJ3241 (1991).

1989 (1)

1987 (1)

A.J. Devaney, “Linearised Inverse Scattering in Attenuating Media,” Inv. Probs. 3, 389–397 (1987).
[CrossRef]

1986 (1)

A. J. Devaney, “Reconstructive Tomography With Diffracting Wavefields,” Inv. Probl. 2, 161–183 (1986).
[CrossRef]

1978 (1)

F. J. Harris, “On The Use of Windows For Harmonic Analysis with the Discrete Fourier Transform,” Proc. Of IEEE 66, 51–83 (1978).
[CrossRef]

1969 (1)

E. Wolf , “Three Dimensional Structure Determination of Semi-Transparent Objects From Holographic Data,” Opt. Commun. 1 , 153–156 (1969).
[CrossRef]

1968 (1)

E. Wolf, “Inverse Diffraction and a New Reciprocity Theorem,” J. Opt. Soc. Am. 58, 1568 (1968).

’t Hooft, G.W.

J.H. Hoogenraad, M.B.van der Mark, S.B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope,” Proc.SPIE / BiOS-97 (SanRemo, 1997) .

Alfano, R. R.

S.K. Gayen, M.E. Zevallos, B. B. Das, and R. R. Alfano and “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.

Alsop, D. C.

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J.A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Roy. Soc. London B. 352, 707 (1997).
[CrossRef] [PubMed]

Anderson, E. R.

Arridge, S. R.

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, ed. G. Muller, B. Chance, Rl. Alfano, S. Arridge, J. Beuthan, E. Gratton, M Kaschke, B. Masters, S. Svanberg, and P. van der Zee, Proc SPIE IS11, 35–64 (1993).

Bank, W.

W. Bank and B. Chance, “An Oxidative Effect in metabolic myopathies - diagnosis by noninvasive tissue oximetry,” Ann. Neurol. 36, 830 (1994).
[CrossRef] [PubMed]

Banos, A.J.

A.J. Banos, in Dipole Radiation In the Presence of a Conducting Half-Space (Pergamon Press, New York, 1966).

Barbour, R. L.

Benaron, D. A.

D. A. Benaron, D. C. Ho, S. Spilman, J. P. Van Houten, and D. K. Stevenson, “Tomographic time-of-flight optical imaging device,” Adv. Exp. Med. Biol. 361, 609–617 (1994).
[CrossRef]

Boas, D.

Boas, D. A .

Brenner, M.

Chance, B.

X.D. Li, J. Culver, D. N. Pattanayak, A. G. Yodh, and B. Chance, “Photon Density Wave Imaging With K-Space Spectrum Analysis: clinical studies - background substraction and boundary effects,” Technical Digest Series - CLEO ’98,  6, 88–89 (1998).

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction Tomography for Biomedical Imaging With Diffuse Photon Density Waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain functions,” Trends. Neurosci. 20, 435 (1997) .
[CrossRef] [PubMed]

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J.A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Roy. Soc. London B. 352, 707 (1997).
[CrossRef] [PubMed]

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48, 34–40 (March 1995).
[CrossRef]

M. A. O’Leary, D. A . Boas, B. Chance, and A.G. Yodh, “Experimental Images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

W. Bank and B. Chance, “An Oxidative Effect in metabolic myopathies - diagnosis by noninvasive tissue oximetry,” Ann. Neurol. 36, 830 (1994).
[CrossRef] [PubMed]

M. S Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance And Transmittance for the Non-Invasive Measurement of Tissue Optical Properties,” Appl. Opt. 28, 2331 (1989).
[CrossRef] [PubMed]

B. Chance, in Photon Migration in Tissues (Plenum Press, 1989).

T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).

Chen, BQ

BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium”. Pure Appl Opt , 7, 1161–1180 (1998).
[CrossRef]

Cheng, X.

Choe, R.

T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).

Clark, N.

Colak, S.B.

J.H. Hoogenraad, M.B.van der Mark, S.B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope,” Proc.SPIE / BiOS-97 (SanRemo, 1997) .

Collins, PJ

Coquoz, O.

Culver, J.

X.D. Li, J. Culver, D. N. Pattanayak, A. G. Yodh, and B. Chance, “Photon Density Wave Imaging With K-Space Spectrum Analysis: clinical studies - background substraction and boundary effects,” Technical Digest Series - CLEO ’98,  6, 88–89 (1998).

T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).

Culver, J. P.

X.D. Li, D. N. Pattanayak, J. P. Culver, T. Durduran, and A. G. Yodh, “Near-Field Diffraction Tomography with Diffuse Photon Density Waves,” to be published (1998).

Danen, R. M.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A.G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Das, B. B.

S.K. Gayen, M.E. Zevallos, B. B. Das, and R. R. Alfano and “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.

Detre, J.A.

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J.A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Roy. Soc. London B. 352, 707 (1997).
[CrossRef] [PubMed]

Devaney, A. J.

A. J. Devaney, “Reconstructive Tomography With Diffracting Wavefields,” Inv. Probl. 2, 161–183 (1986).
[CrossRef]

Devaney, A.J.

A.J. Devaney, “Linearised Inverse Scattering in Attenuating Media,” Inv. Probs. 3, 389–397 (1987).
[CrossRef]

A.J. Devaney, “Diffraction Tomography,” Inv. Meth. In Electromagnetic Imaging, 1107–1135 .

Durduran, T.

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction Tomography for Biomedical Imaging With Diffuse Photon Density Waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

X.D. Li, D. N. Pattanayak, J. P. Culver, T. Durduran, and A. G. Yodh, “Near-Field Diffraction Tomography with Diffuse Photon Density Waves,” to be published (1998).

T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).

Fantini, S.

S. Fantini, S. A. Walker, M. A. Franceschini, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton. “Assessment of the size, position, and optical properties of breast tumors in vivo by non-invasive optical methods” Appl. Opt.,  37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, and W.W. Mantulin, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149 (1996).
[CrossRef] [PubMed]

Fender, J. S.

Fishkin, J. B.

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10 (1997).
[CrossRef] [PubMed]

E. Gratton and J. B. Fishkin, “Optical spectroscopy of tissue-like phantoms using photon density waves,” Comments on Cell. and Mol. Biophys. 8(6), 309–359 (1995).

Franceschini, M. A.

S. Fantini, S. A. Walker, M. A. Franceschini, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton. “Assessment of the size, position, and optical properties of breast tumors in vivo by non-invasive optical methods” Appl. Opt.,  37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, and W.W. Mantulin, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149 (1996).
[CrossRef] [PubMed]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, and W.W. Mantulin, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149 (1996).
[CrossRef] [PubMed]

Gayen, S.K.

S.K. Gayen, M.E. Zevallos, B. B. Das, and R. R. Alfano and “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.

Goodman, J. W.

J. W. Goodman, in Introduction To Fourier Optics, (McGraw-Hill, San Fransisco , 1968).

Gratton, E.

S. Fantini, S. A. Walker, M. A. Franceschini, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton. “Assessment of the size, position, and optical properties of breast tumors in vivo by non-invasive optical methods” Appl. Opt.,  37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, and W.W. Mantulin, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149 (1996).
[CrossRef] [PubMed]

E. Gratton and J. B. Fishkin, “Optical spectroscopy of tissue-like phantoms using photon density waves,” Comments on Cell. and Mol. Biophys. 8(6), 309–359 (1995).

Harris, F. J.

F. J. Harris, “On The Use of Windows For Harmonic Analysis with the Discrete Fourier Transform,” Proc. Of IEEE 66, 51–83 (1978).
[CrossRef]

Haskell, R.C.M.

Ho, D. C.

D. A. Benaron, D. C. Ho, S. Spilman, J. P. Van Houten, and D. K. Stevenson, “Tomographic time-of-flight optical imaging device,” Adv. Exp. Med. Biol. 361, 609–617 (1994).
[CrossRef]

Holboke, M.

T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).

Hoogenraad, J.H.

J.H. Hoogenraad, M.B.van der Mark, S.B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope,” Proc.SPIE / BiOS-97 (SanRemo, 1997) .

Hoshi, Y.

Y. Hoshi and M. Tamura, “Near-Infrared Optical Detection of Sequential Brain Activation in The Prefrontal cortex during mental tasks,” Neuroimage. 5, 292 (1997).
[CrossRef] [PubMed]

Houten, J. P. Van

D. A. Benaron, D. C. Ho, S. Spilman, J. P. Van Houten, and D. K. Stevenson, “Tomographic time-of-flight optical imaging device,” Adv. Exp. Med. Biol. 361, 609–617 (1994).
[CrossRef]

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, and W.W. Mantulin, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149 (1996).
[CrossRef] [PubMed]

Jiang, H.

Kak, A.

A. Kak and M. Slaney, in Principles of Computerized Tomographic Imaging ( IEEE Press, New York, 1988).

Kaschke, M.

S. Fantini, S. A. Walker, M. A. Franceschini, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton. “Assessment of the size, position, and optical properties of breast tumors in vivo by non-invasive optical methods” Appl. Opt.,  37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

Lasocki, DL

Li, X. D.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A.G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).

Li, X.D.

X.D. Li, J. Culver, D. N. Pattanayak, A. G. Yodh, and B. Chance, “Photon Density Wave Imaging With K-Space Spectrum Analysis: clinical studies - background substraction and boundary effects,” Technical Digest Series - CLEO ’98,  6, 88–89 (1998).

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction Tomography for Biomedical Imaging With Diffuse Photon Density Waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

X.D. Li, D. N. Pattanayak, J. P. Culver, T. Durduran, and A. G. Yodh, “Near-Field Diffraction Tomography with Diffuse Photon Density Waves,” to be published (1998).

X.D. Li ,in PhD Thesis (Dept. Physics & Astronomy, U. of Pennsylvania, May 1998).

Linden, E.S.van der

J.H. Hoogenraad, M.B.van der Mark, S.B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope,” Proc.SPIE / BiOS-97 (SanRemo, 1997) .

Luo, Q. M.

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J.A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Roy. Soc. London B. 352, 707 (1997).
[CrossRef] [PubMed]

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

Mantulin, W.W.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, and W.W. Mantulin, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149 (1996).
[CrossRef] [PubMed]

Mark, M.B.van der

J.H. Hoogenraad, M.B.van der Mark, S.B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope,” Proc.SPIE / BiOS-97 (SanRemo, 1997) .

Matson, C. L.

Matson, CL

McMackin, L.

Moesta, K. T.

S. Fantini, S. A. Walker, M. A. Franceschini, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton. “Assessment of the size, position, and optical properties of breast tumors in vivo by non-invasive optical methods” Appl. Opt.,  37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

Nieto-Vesperinas, M.

J. Ripoll and M. Nieto-Vesperinas, “Spatial Resolution of Diffuse Photon Density Waves,”to be published in J. Opt. Soc. Am.A (1999).

J. Ripoll and M. Nieto-Vesperinas, “Reflection and Transmission Coefficients of Diffuse Photon Density Waves,” in press.

Nioka, S.

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J.A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Roy. Soc. London B. 352, 707 (1997).
[CrossRef] [PubMed]

Norton, S. J.

O’Leary, M.

M. O’Leary, “Imaging with Diffuse Photon Density Waves,” in PhD Thesis (Dept. Physics & Astronomy, U. of Pennsylvania, May 1996) .

O’Leary, M. A.

Osterberg, U. L.

Pattanayak, D. N.

X.D. Li, J. Culver, D. N. Pattanayak, A. G. Yodh, and B. Chance, “Photon Density Wave Imaging With K-Space Spectrum Analysis: clinical studies - background substraction and boundary effects,” Technical Digest Series - CLEO ’98,  6, 88–89 (1998).

D. N. Pattanayak, “Resolution of Optical Images Formed by Diffusion Waves in Highly Scattering Media,” GE Tech. Info. Series 91CRJ3241 (1991).

T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).

X.D. Li, D. N. Pattanayak, J. P. Culver, T. Durduran, and A. G. Yodh, “Near-Field Diffraction Tomography with Diffuse Photon Density Waves,” to be published (1998).

Pattanayak, D.N.

Patterson, M. S

Patterson, M.S.

Paulsen, K. D.

Paulsen, KD

Pei, Y.

Pogue, B. W.

Pogue, BW

Ripoll, J.

J. Ripoll and M. Nieto-Vesperinas, “Reflection and Transmission Coefficients of Diffuse Photon Density Waves,” in press.

J. Ripoll and M. Nieto-Vesperinas, “Spatial Resolution of Diffuse Photon Density Waves,”to be published in J. Opt. Soc. Am.A (1999).

Schlag, P. M.

S. Fantini, S. A. Walker, M. A. Franceschini, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton. “Assessment of the size, position, and optical properties of breast tumors in vivo by non-invasive optical methods” Appl. Opt.,  37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

Schotland, J. C.

J. C. Schotland, “Continous Wave Diffusion Imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
[CrossRef]

J. C. Schotland, “Near-field Inverse Scattering: Microscopy to Tomography,” SPIE3597 (1999).

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

Slaney, M.

A. Kak and M. Slaney, in Principles of Computerized Tomographic Imaging ( IEEE Press, New York, 1988).

Spilman, S.

D. A. Benaron, D. C. Ho, S. Spilman, J. P. Van Houten, and D. K. Stevenson, “Tomographic time-of-flight optical imaging device,” Adv. Exp. Med. Biol. 361, 609–617 (1994).
[CrossRef]

Stamnes, JJ

BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium”. Pure Appl Opt , 7, 1161–1180 (1998).
[CrossRef]

Stamnes, K

BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium”. Pure Appl Opt , 7, 1161–1180 (1998).
[CrossRef]

Stevenson, D. K.

D. A. Benaron, D. C. Ho, S. Spilman, J. P. Van Houten, and D. K. Stevenson, “Tomographic time-of-flight optical imaging device,” Adv. Exp. Med. Biol. 361, 609–617 (1994).
[CrossRef]

Svaasand, L. O.

Tamura, M.

Y. Hoshi and M. Tamura, “Near-Infrared Optical Detection of Sequential Brain Activation in The Prefrontal cortex during mental tasks,” Neuroimage. 5, 292 (1997).
[CrossRef] [PubMed]

Thayer, W. S.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A.G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Trombeg, B.J

Tromberg, B. J.

Tsay, T.

Villringer, A.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain functions,” Trends. Neurosci. 20, 435 (1997) .
[CrossRef] [PubMed]

Vo-Dinh, T.

Walker, S. A.

Wang, Y.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A.G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions using a born iterative mehod,” J. Opt. Soc. Am. A 14, 325–342 (1997).
[CrossRef]

Wilson, B. C.

Wolf, E.

E. Wolf , “Three Dimensional Structure Determination of Semi-Transparent Objects From Holographic Data,” Opt. Commun. 1 , 153–156 (1969).
[CrossRef]

E. Wolf, “Inverse Diffraction and a New Reciprocity Theorem,” J. Opt. Soc. Am. 58, 1568 (1968).

E. Wolf, “Principles and Development of Diffraction Tomography” in Trends in Optics, ed. A. Consortini (Academic Press, San Diego, 1996).
[CrossRef]

Yao, Y.

Yodh, A. G.

X.D. Li, J. Culver, D. N. Pattanayak, A. G. Yodh, and B. Chance, “Photon Density Wave Imaging With K-Space Spectrum Analysis: clinical studies - background substraction and boundary effects,” Technical Digest Series - CLEO ’98,  6, 88–89 (1998).

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48, 34–40 (March 1995).
[CrossRef]

X.D. Li, D. N. Pattanayak, J. P. Culver, T. Durduran, and A. G. Yodh, “Near-Field Diffraction Tomography with Diffuse Photon Density Waves,” to be published (1998).

T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).

Yodh, A.G.

Zevallos, M.E.

S.K. Gayen, M.E. Zevallos, B. B. Das, and R. R. Alfano and “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.

Zhu, W.

Zubkov, L.

T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).

Adv. Exp. Med. Biol. (1)

D. A. Benaron, D. C. Ho, S. Spilman, J. P. Van Houten, and D. K. Stevenson, “Tomographic time-of-flight optical imaging device,” Adv. Exp. Med. Biol. 361, 609–617 (1994).
[CrossRef]

Ann. Neurol. (1)

W. Bank and B. Chance, “An Oxidative Effect in metabolic myopathies - diagnosis by noninvasive tissue oximetry,” Ann. Neurol. 36, 830 (1994).
[CrossRef] [PubMed]

Appl. Opt. (5)

Comments on Cell. and Mol. Biophys. (1)

E. Gratton and J. B. Fishkin, “Optical spectroscopy of tissue-like phantoms using photon density waves,” Comments on Cell. and Mol. Biophys. 8(6), 309–359 (1995).

GE Tech. Info. Series (1)

D. N. Pattanayak, “Resolution of Optical Images Formed by Diffusion Waves in Highly Scattering Media,” GE Tech. Info. Series 91CRJ3241 (1991).

Inv. Probl. (1)

A. J. Devaney, “Reconstructive Tomography With Diffracting Wavefields,” Inv. Probl. 2, 161–183 (1986).
[CrossRef]

Inv. Probs. (1)

A.J. Devaney, “Linearised Inverse Scattering in Attenuating Media,” Inv. Probs. 3, 389–397 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

E. Wolf, “Inverse Diffraction and a New Reciprocity Theorem,” J. Opt. Soc. Am. 58, 1568 (1968).

J. Opt. Soc. Am. A (5)

Med. Phys. (1)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, and W.W. Mantulin, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149 (1996).
[CrossRef] [PubMed]

Neuroimage. (1)

Y. Hoshi and M. Tamura, “Near-Infrared Optical Detection of Sequential Brain Activation in The Prefrontal cortex during mental tasks,” Neuroimage. 5, 292 (1997).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. Wolf , “Three Dimensional Structure Determination of Semi-Transparent Objects From Holographic Data,” Opt. Commun. 1 , 153–156 (1969).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phil. Trans. Roy. Soc. London B. (1)

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J.A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Roy. Soc. London B. 352, 707 (1997).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, and A.G. Yodh, “Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Physics Today (1)

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48, 34–40 (March 1995).
[CrossRef]

Proc SPIE (1)

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, ed. G. Muller, B. Chance, Rl. Alfano, S. Arridge, J. Beuthan, E. Gratton, M Kaschke, B. Masters, S. Svanberg, and P. van der Zee, Proc SPIE IS11, 35–64 (1993).

Proc. Natl. Ac ad. Sci. USA (1)

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA,  94, 6468–6473 (1997).
[CrossRef]

Proc. Of IEEE (1)

F. J. Harris, “On The Use of Windows For Harmonic Analysis with the Discrete Fourier Transform,” Proc. Of IEEE 66, 51–83 (1978).
[CrossRef]

Pure Appl Opt (1)

BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium”. Pure Appl Opt , 7, 1161–1180 (1998).
[CrossRef]

Technical Digest Series - CLEO ’98 (1)

X.D. Li, J. Culver, D. N. Pattanayak, A. G. Yodh, and B. Chance, “Photon Density Wave Imaging With K-Space Spectrum Analysis: clinical studies - background substraction and boundary effects,” Technical Digest Series - CLEO ’98,  6, 88–89 (1998).

Trends. Neurosci. (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain functions,” Trends. Neurosci. 20, 435 (1997) .
[CrossRef] [PubMed]

Other (17)

M. O’Leary, “Imaging with Diffuse Photon Density Waves,” in PhD Thesis (Dept. Physics & Astronomy, U. of Pennsylvania, May 1996) .

B. Chance, in Photon Migration in Tissues (Plenum Press, 1989).

J.H. Hoogenraad, M.B.van der Mark, S.B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope,” Proc.SPIE / BiOS-97 (SanRemo, 1997) .

S.K. Gayen, M.E. Zevallos, B. B. Das, and R. R. Alfano and “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.

A. Kak and M. Slaney, in Principles of Computerized Tomographic Imaging ( IEEE Press, New York, 1988).

E. Wolf, “Principles and Development of Diffraction Tomography” in Trends in Optics, ed. A. Consortini (Academic Press, San Diego, 1996).
[CrossRef]

A.J. Devaney, “Diffraction Tomography,” Inv. Meth. In Electromagnetic Imaging, 1107–1135 .

X.D. Li ,in PhD Thesis (Dept. Physics & Astronomy, U. of Pennsylvania, May 1998).

X.D. Li, D. N. Pattanayak, J. P. Culver, T. Durduran, and A. G. Yodh, “Near-Field Diffraction Tomography with Diffuse Photon Density Waves,” to be published (1998).

J. C. Schotland, “Near-field Inverse Scattering: Microscopy to Tomography,” SPIE3597 (1999).

Essentially we assume that the scattering contrast (δμ′s) is slowly varying. For a detailed description we refer to [33] and [34].

A.J. Banos, in Dipole Radiation In the Presence of a Conducting Half-Space (Pergamon Press, New York, 1966).

J. W. Goodman, in Introduction To Fourier Optics, (McGraw-Hill, San Fransisco , 1968).

We are aware of a similar normalization scheme by Hanli Liu and her collaborators ( private communications SPIE Jan 1999).

T. Durduran, J. Culver, L. Zubkov, M. Holboke, R. Choe, X. D. Li, B. Chance, D. N. Pattanayak, and A. G. Yodh, “Diffraction Tomography In Diffuse Optical Imaging; Filters & Noise,” SPIE3597 (1999).

J. Ripoll and M. Nieto-Vesperinas, “Reflection and Transmission Coefficients of Diffuse Photon Density Waves,” in press.

J. Ripoll and M. Nieto-Vesperinas, “Spatial Resolution of Diffuse Photon Density Waves,”to be published in J. Opt. Soc. Am.A (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Figure 1.
Figure 1.

The generic near-field diffraction tomography experiment. The detector is scanned in a 2D grid on the surface of the plane parallel to and displaced from the plane containing the source. The breast is embedded in the box along with Intralipid in order to match its average optical properties.

Figure 2.
Figure 2.

Simplified flow diagram of the image reconstruction algorithm. Dotted lines are used for optional steps. Brown and blue indicate real-m filtering, green indicates G-filtering steps.

Figure 3.
Figure 3.

(a)Amplitude of the scattered wave as a function of p for a fixed q and (b) amplitude of the tumor function plotted in the k-space for noiseless (only numerical noise) and (c) noise-added data from the single object (sec. 5.1) . The maximum frequency, |p| = π/∆x. The rising “wings” on the sides are due to noise. The noise effects are amplified by ≈ 103 relative to the noiseless case at large p.

Figure 4.
Figure 4.

Single Slice Phantom: Left figure shows a 3D rendering of the phantom. Gray region has background properties. The detector plane is assumed to be at z=5cm and the source is at the origin in z=0cm plane. Amplitude of the scattered field in the detector plane for the phantom shown in the middle (noiseless) and right (noise added) figures.

Figure 5.
Figure 5.

(a) and (b) projections at z=2.42, z=3.28 respectively, (c) Sj vs zj (cm) through the transverse center, peaks at z=2.71, (d) projection at z=2.71. All with real-m filter.

Figure 6.
Figure 6.

(a) projection at z=2.71 at real-m peak, (b) Sj vs zj (cm) through the transverse center peaks at z=4cm , (c) projection at z=4.0. All obtained with G-giltering.

Figure 7.
Figure 7.

Estimate of resolution(cm) vs distance from source plane (cm) . The changing depth dependent cut-off frequency results in the increase in resolution with distance from source plane (i.e decrease in resolution with depth from the detector plane).

Figure 8.
Figure 8.

Two slice Phantoms: Two leftmost figures show 3D renderings. Gray region has background properties. The detector plane is at z=5cm and the source is at the origin in z=0cm plane. Amplitude of the scattered field at the detector plane is shown in the two rightmost figures. The left is the noiseless data and the right shows the data after adding noise.

Figure 9.
Figure 9.

(a) Circles (crosses) show Sj vs zj (cm) through the center region of deeper (shallower) object obtained with m-filter. Peak for both objects are exact. Then with G-filter we get projections at (b) z=3.71 and (c) at z=4.41.

Figure 10.
Figure 10.

Three Dimensional Rendering of the G-filter reconstruction. An isosurface at Sj = 0.042 is shown in two different angles in (a) and (b). In (c) and (d) images of Sj in x-z plane through y=2cm and y=-2cm are shown respectively. Compare the results to that of fig.(8)

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Φ sc ( r ) = V T ( r ) G 0 ( r , r ) d 3 r .
T abs ( r ) = υ D 0 Φ 0 ( r ) δ μ a ( r ) ,
T sc ( r ) = 3 D 0 k 0 2 υ Φ 0 ( r ) .
G 0 ( r , r ) = exp ( i k 0 r r ) 4 π r r .
G 0 ( r , r ) = dpdq G ̂ 0 ( p , q , z d , z ) e i ( p ( x d x ) + q ( y d y ) ) ,
G ̂ 0 ( p , q , z d , z ) = i 2 m e i m z d z ,
Φ ̂ sc ( p , q , z d ) = d z G ̂ 0 ( p , q , z d , z ) T ̂ ( p , q , z ) .
Φ ̂ sc ( p , q , z d ) = j = 1 N G ̂ 0 ( p , q , z d , z ) T ̂ ( p , q , z j ) = j = 1 N i Δ z 2 m T ̂ ( p , q , z j ) e i m ( z d z j ) .
T ̂ ( p , q , z obj ) = Φ sc ( p , q , z d ) Δ z G ̂ 0 ( p , q , z d , z obj ) ,
T ( x , y , z obj ) = dpdq e i 2 π ( p x + q y ) Δ z G ̂ ( p , q , z obj , z ) dxdy e i 2 π ( p x + q y ) Φ sc ( x , y , z d ) ,
S j = δ μ a δ μ ¯ a xy ( δ μ axy δ μ ¯ a ) 2
p max 2 + q max 2 = ( 2 π L ) 2 .

Metrics