Abstract

A new integro-differential equation for diffuse photon density waves (DPDW) is derived within the diffusion approximation. The new equation applies to inhomogeneous bounded turbid media. Interestingly, it does not contain any terms involving gradients of the light diffusion coefficient. The integro-differential equation for diffusive waves is used to develop a 3D-slice imaging algorithm based on the angular spectrum representation in the parallel plate geometry. The algorithm may be useful for near infrared optical imaging of breast tissue, and is applicable to other diagnostics such as ultrasound and microwave imaging.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Royy. Soc. London B. 352, 707 (1997).
    [CrossRef]
  2. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain functions,” Trends. Neurosci. 20, 435 (1997) .
    [CrossRef] [PubMed]
  3. Y. Hoshi and M. Tamura, “Near-Infrared Optical Detection of Sequential Brain Activation in The Prefrontal cortex during mental tasks,” Neuroimage. 5, 292 (1997).
    [CrossRef] [PubMed]
  4. J. H. Hoogenraad, M. B.van der Mark, S. B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope”, Proc.SPIE / BiOS-97 (SanRemo, 1997 ).
  5. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10 (1997).
    [CrossRef] [PubMed]
  6. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef]
  7. S. K. Gayen, M. E. Zevallos, B. B. Das, and R. R. Alfano, “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.
  8. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen ,“Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391 (December 1997). http://epubs.osa.org/oearchive/source/2827.htm
    [CrossRef] [PubMed]
  9. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Imaging and Characterization of Breast tumors using a laser-pulse mammograph,” SPIE3597 (1999).
  10. A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (March 1995).
    [CrossRef]
  11. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M.S. Patterson, “Optical Image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  12. Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions using a born iterative mehod,” J. Opt. Soc. Am. A 14, 325–342 (1997).
    [CrossRef]
  13. S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, ed. G. Muller, B. Chance, Rl. Alfano, S. Arridge, J. Beuthan, E. Gratton, M Kaschke, B. Masters, S. Svanberg, and P. van der Zee, Proc SPIEIS11, 35–64 (1993).
  14. An integro-differential equation valid for infinite medium,but containing no gradient of Diffusion constant was used for image reconstruction by M. A. O’Leary, D. A . Boas, B. Chance, and A.G. Yodh, “Experimental Images of heterogeneous turbid media by frequency-domain diffusing-photon tomotography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef]
  15. An anonymous reviewer has brought to our attention a recent paper by S.R. Arridge and W.R.B. Lionheart, “Non-uniqueness in diffusion based optical tomography,” Opt. Lett. 23, 882–884 (1998), which deals with the second order derivative of the diffusion coefficient.
    [CrossRef]
  16. D. N. Pattanayak and E. Wolf , “ Resonance States as Solutions of the Schrodinger Equation with a Non-Local Boundary Condition, ” Phys. Rev. D13, 2287(1976).
  17. J. L. Ye, R.P. Millane, K. J. Webb, and T. J. Downar, “Importance of the gradD term in frequency resolved optical diffusion imaging,”Opt. Letters, 23,1998.
    [CrossRef]
  18. K. M. Case and P. F. Zweifel, in Linear Transport Theory (Addison -Wesley,MA,1967).
  19. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978) Vol.. 19.
  20. P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill,1953).
  21. Claus Muller, Foundations of the Mathematical theory of Electromagnetic Waves (Springer-Verlag,New York,1969).
  22. H. Weyl and Ann. Phys. 60, 481, (1919).
  23. See, also , A.J. Banos, in Dipole Radiation In the Presence of a Conducting Half-Space (Pergamon Press, New York, 1966).
  24. E. Wolf, “Principles and Development of Diffraction Tomography” in Trends in Optics, ed. A. Consortini (Academic Press, San Diego, 1996).
    [CrossRef]
  25. A. J. Devaney, “Reconstructive tomography with diffracting Wavefields,” Inv. Probl., 2,161–18391986).
  26. For an application of diffraction tomography to near field diffusion wave imaging and an analytical expression relating theoretical resolution and tissue thickness see, GE Class I Technical report (publicly available on request) by D. N. Pattanayak, “Resolution of Optical Images Formed by Diffusion Waves in Highly Scattering Media,” GE Tech. Info. Series 91CRD241 (1991).
  27. C. L. Matson, N. Clark, L. McMackin, and J. S. Fender, “Three-dimensional Tumor Localization in Thick Tissue with The Use of Diffuse Photon-Density Waves,” Appl. Opt. 36, 214–219 (1997).
    [CrossRef] [PubMed]
  28. X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction Tomography for Biomedical Imaging With Diffuse Photon Density Waves,” Opt. Lett. 22, 573–575 (1997).
    [CrossRef] [PubMed]
  29. BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium.” Pure Appl. Opt. 7, 1161–1180 (1998).
    [CrossRef]
  30. X. Cheng and D. Boas, “Diffuse Optical Reflection Tomography Using Continous Wave Illumination,” Opt. Express 3, 118–123 (1998); http://epubs.osa.org/oearchive/source/5663.htm
    [CrossRef] [PubMed]
  31. S. J. Norton and T. Vo-Dinh, “Diffraction Tomographic Imaging With Photon Density Waves: an Explicit Solution, J. Opt. Soc. Am. A 15, 2670–2677 (1998).
    [CrossRef]
  32. J. C. Schotland, “Continuos Wave Diffusion Imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
    [CrossRef]
  33. J. Ripoll and M. Nieto-Vesperinas, “Reflection and Transmission Coefficients of Diffuse Photon Density Waves, (to be published).
  34. J. Ripoll and M. Nieto-Vesperinas, “Spatial Resolution of Diffuse Photon Density Waves, ” J. Opt. Soc. Am.A (to be published).
  35. C.L. Matson and H. Liu, “Analysis of the forward problem with diffuse photon density waves in turbid media by use of a diffraction tomography model,” J. Opt. Soc. Am. A 16, 455–466 (1999).
    [CrossRef]
  36. For the angular spectrum representation in a slab field and for an excellent account of the angular spectrum representation see, L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York,1995).

1999 (1)

1998 (5)

1997 (10)

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction Tomography for Biomedical Imaging With Diffuse Photon Density Waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Royy. Soc. London B. 352, 707 (1997).
[CrossRef]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain functions,” Trends. Neurosci. 20, 435 (1997) .
[CrossRef] [PubMed]

Y. Hoshi and M. Tamura, “Near-Infrared Optical Detection of Sequential Brain Activation in The Prefrontal cortex during mental tasks,” Neuroimage. 5, 292 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10 (1997).
[CrossRef] [PubMed]

C. L. Matson, N. Clark, L. McMackin, and J. S. Fender, “Three-dimensional Tumor Localization in Thick Tissue with The Use of Diffuse Photon-Density Waves,” Appl. Opt. 36, 214–219 (1997).
[CrossRef] [PubMed]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen ,“Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391 (December 1997). http://epubs.osa.org/oearchive/source/2827.htm
[CrossRef] [PubMed]

J. C. Schotland, “Continuos Wave Diffusion Imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
[CrossRef]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions using a born iterative mehod,” J. Opt. Soc. Am. A 14, 325–342 (1997).
[CrossRef]

1996 (1)

1995 (2)

1991 (1)

For an application of diffraction tomography to near field diffusion wave imaging and an analytical expression relating theoretical resolution and tissue thickness see, GE Class I Technical report (publicly available on request) by D. N. Pattanayak, “Resolution of Optical Images Formed by Diffusion Waves in Highly Scattering Media,” GE Tech. Info. Series 91CRD241 (1991).

1976 (1)

D. N. Pattanayak and E. Wolf , “ Resonance States as Solutions of the Schrodinger Equation with a Non-Local Boundary Condition, ” Phys. Rev. D13, 2287(1976).

1919 (1)

H. Weyl and Ann. Phys. 60, 481, (1919).

’t Hooft, G.W.

J. H. Hoogenraad, M. B.van der Mark, S. B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope”, Proc.SPIE / BiOS-97 (SanRemo, 1997 ).

Alfano, R. R.

S. K. Gayen, M. E. Zevallos, B. B. Das, and R. R. Alfano, “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.

Alsop, D. C.

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Royy. Soc. London B. 352, 707 (1997).
[CrossRef]

Anderson, E. R.

Ann,

H. Weyl and Ann. Phys. 60, 481, (1919).

Arridge, S. R.

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, ed. G. Muller, B. Chance, Rl. Alfano, S. Arridge, J. Beuthan, E. Gratton, M Kaschke, B. Masters, S. Svanberg, and P. van der Zee, Proc SPIEIS11, 35–64 (1993).

Arridge, S.R.

Banos, A.J.

See, also , A.J. Banos, in Dipole Radiation In the Presence of a Conducting Half-Space (Pergamon Press, New York, 1966).

Barbour, R. L.

Boas, D.

Boas, D. A .

Brenner, M.

Case, K. M.

K. M. Case and P. F. Zweifel, in Linear Transport Theory (Addison -Wesley,MA,1967).

Chance, B.

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Royy. Soc. London B. 352, 707 (1997).
[CrossRef]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain functions,” Trends. Neurosci. 20, 435 (1997) .
[CrossRef] [PubMed]

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction Tomography for Biomedical Imaging With Diffuse Photon Density Waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

An integro-differential equation valid for infinite medium,but containing no gradient of Diffusion constant was used for image reconstruction by M. A. O’Leary, D. A . Boas, B. Chance, and A.G. Yodh, “Experimental Images of heterogeneous turbid media by frequency-domain diffusing-photon tomotography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (March 1995).
[CrossRef]

Chen, BQ

BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium.” Pure Appl. Opt. 7, 1161–1180 (1998).
[CrossRef]

Cheng, X.

Clark, N.

Colak, S. B.

J. H. Hoogenraad, M. B.van der Mark, S. B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope”, Proc.SPIE / BiOS-97 (SanRemo, 1997 ).

Coquoz, O.

Das, B. B.

S. K. Gayen, M. E. Zevallos, B. B. Das, and R. R. Alfano, “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.

Detre, J. A.

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Royy. Soc. London B. 352, 707 (1997).
[CrossRef]

Devaney, A. J.

A. J. Devaney, “Reconstructive tomography with diffracting Wavefields,” Inv. Probl., 2,161–18391986).

Downar, T. J.

J. L. Ye, R.P. Millane, K. J. Webb, and T. J. Downar, “Importance of the gradD term in frequency resolved optical diffusion imaging,”Opt. Letters, 23,1998.
[CrossRef]

Durduran, T.

Fantini, S.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

Fender, J. S.

Feshbach, H.

P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill,1953).

Fishkin, J. B.

Franceschini, M. A.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

Gayen, S. K.

S. K. Gayen, M. E. Zevallos, B. B. Das, and R. R. Alfano, “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

Grosenick, D.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Imaging and Characterization of Breast tumors using a laser-pulse mammograph,” SPIE3597 (1999).

Hoogenraad, J. H.

J. H. Hoogenraad, M. B.van der Mark, S. B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope”, Proc.SPIE / BiOS-97 (SanRemo, 1997 ).

Hoshi, Y.

Y. Hoshi and M. Tamura, “Near-Infrared Optical Detection of Sequential Brain Activation in The Prefrontal cortex during mental tasks,” Neuroimage. 5, 292 (1997).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978) Vol.. 19.

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

Jiang, H.

Kaschke, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

Li, X.D.

Linden, E.S.van der

J. H. Hoogenraad, M. B.van der Mark, S. B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope”, Proc.SPIE / BiOS-97 (SanRemo, 1997 ).

Lionheart, W.R.B.

Liu, H.

Luo, Q. M.

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Royy. Soc. London B. 352, 707 (1997).
[CrossRef]

Mandel, L.

For the angular spectrum representation in a slab field and for an excellent account of the angular spectrum representation see, L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York,1995).

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

Mark, M. B.van der

J. H. Hoogenraad, M. B.van der Mark, S. B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope”, Proc.SPIE / BiOS-97 (SanRemo, 1997 ).

Matson, C. L.

Matson, C.L.

McBride, T.

McMackin, L.

Millane, R.P.

J. L. Ye, R.P. Millane, K. J. Webb, and T. J. Downar, “Importance of the gradD term in frequency resolved optical diffusion imaging,”Opt. Letters, 23,1998.
[CrossRef]

Moesta, K. T.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Imaging and Characterization of Breast tumors using a laser-pulse mammograph,” SPIE3597 (1999).

Morse, P.M.

P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill,1953).

Nieto-Vesperinas, M.

J. Ripoll and M. Nieto-Vesperinas, “Spatial Resolution of Diffuse Photon Density Waves, ” J. Opt. Soc. Am.A (to be published).

J. Ripoll and M. Nieto-Vesperinas, “Reflection and Transmission Coefficients of Diffuse Photon Density Waves, (to be published).

Nioka, S.

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Royy. Soc. London B. 352, 707 (1997).
[CrossRef]

Norton, S. J.

O’Leary, M. A.

Osterberg, U.

Osterberg, U. L.

Pattanayak, D. N.

For an application of diffraction tomography to near field diffusion wave imaging and an analytical expression relating theoretical resolution and tissue thickness see, GE Class I Technical report (publicly available on request) by D. N. Pattanayak, “Resolution of Optical Images Formed by Diffusion Waves in Highly Scattering Media,” GE Tech. Info. Series 91CRD241 (1991).

D. N. Pattanayak and E. Wolf , “ Resonance States as Solutions of the Schrodinger Equation with a Non-Local Boundary Condition, ” Phys. Rev. D13, 2287(1976).

Pattanayak, D.N.

Patterson, M.S.

Paulsen, K.

Paulsen, K. D.

Pei, Y.

Pogue, B. W.

Rinneberg, H. H.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Imaging and Characterization of Breast tumors using a laser-pulse mammograph,” SPIE3597 (1999).

Ripoll, J.

J. Ripoll and M. Nieto-Vesperinas, “Spatial Resolution of Diffuse Photon Density Waves, ” J. Opt. Soc. Am.A (to be published).

J. Ripoll and M. Nieto-Vesperinas, “Reflection and Transmission Coefficients of Diffuse Photon Density Waves, (to be published).

Schlag, P. M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Imaging and Characterization of Breast tumors using a laser-pulse mammograph,” SPIE3597 (1999).

Schotland, J. C.

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

Stamnes, JJ

BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium.” Pure Appl. Opt. 7, 1161–1180 (1998).
[CrossRef]

Stamnes, K

BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium.” Pure Appl. Opt. 7, 1161–1180 (1998).
[CrossRef]

Tamura, M.

Y. Hoshi and M. Tamura, “Near-Infrared Optical Detection of Sequential Brain Activation in The Prefrontal cortex during mental tasks,” Neuroimage. 5, 292 (1997).
[CrossRef] [PubMed]

Testorf, M.

Tromberg, B. J.

Villringer, A.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain functions,” Trends. Neurosci. 20, 435 (1997) .
[CrossRef] [PubMed]

Vo-Dinh, T.

Wabnitz, H.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Imaging and Characterization of Breast tumors using a laser-pulse mammograph,” SPIE3597 (1999).

Wang, Y.

Webb, K. J.

J. L. Ye, R.P. Millane, K. J. Webb, and T. J. Downar, “Importance of the gradD term in frequency resolved optical diffusion imaging,”Opt. Letters, 23,1998.
[CrossRef]

Weyl, H.

H. Weyl and Ann. Phys. 60, 481, (1919).

Wolf, E.

D. N. Pattanayak and E. Wolf , “ Resonance States as Solutions of the Schrodinger Equation with a Non-Local Boundary Condition, ” Phys. Rev. D13, 2287(1976).

E. Wolf, “Principles and Development of Diffraction Tomography” in Trends in Optics, ed. A. Consortini (Academic Press, San Diego, 1996).
[CrossRef]

For the angular spectrum representation in a slab field and for an excellent account of the angular spectrum representation see, L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York,1995).

Yao, Y.

Ye, J. L.

J. L. Ye, R.P. Millane, K. J. Webb, and T. J. Downar, “Importance of the gradD term in frequency resolved optical diffusion imaging,”Opt. Letters, 23,1998.
[CrossRef]

Yodh, A. G.

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (March 1995).
[CrossRef]

Yodh, A.G.

Zevallos, M. E.

S. K. Gayen, M. E. Zevallos, B. B. Das, and R. R. Alfano, “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.

Zhu, W.

Zweifel, P. F.

K. M. Case and P. F. Zweifel, in Linear Transport Theory (Addison -Wesley,MA,1967).

Appl. Opt. (2)

GE Tech. Info. Series (1)

For an application of diffraction tomography to near field diffusion wave imaging and an analytical expression relating theoretical resolution and tissue thickness see, GE Class I Technical report (publicly available on request) by D. N. Pattanayak, “Resolution of Optical Images Formed by Diffusion Waves in Highly Scattering Media,” GE Tech. Info. Series 91CRD241 (1991).

Inv. Probl. (1)

A. J. Devaney, “Reconstructive tomography with diffracting Wavefields,” Inv. Probl., 2,161–18391986).

J. Opt. Soc. Am. A (5)

Neuroimage. (1)

Y. Hoshi and M. Tamura, “Near-Infrared Optical Detection of Sequential Brain Activation in The Prefrontal cortex during mental tasks,” Neuroimage. 5, 292 (1997).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Opt. Letters (1)

J. L. Ye, R.P. Millane, K. J. Webb, and T. J. Downar, “Importance of the gradD term in frequency resolved optical diffusion imaging,”Opt. Letters, 23,1998.
[CrossRef]

Phil. Trans. Royy. Soc. London B. (1)

B. Chance, Q. M. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. Royy. Soc. London B. 352, 707 (1997).
[CrossRef]

Phys. (1)

H. Weyl and Ann. Phys. 60, 481, (1919).

Phys. Rev. (1)

D. N. Pattanayak and E. Wolf , “ Resonance States as Solutions of the Schrodinger Equation with a Non-Local Boundary Condition, ” Phys. Rev. D13, 2287(1976).

Phys. Today (1)

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (March 1995).
[CrossRef]

Proc. Natl. Ac ad. Sci. USA (1)

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke. “Frequency-domain instrumentation techniques enhance optical mammography: Initial clinical results” Proc. Natl. Ac ad. Sci. USA 94, 6468–6473 (1997).
[CrossRef]

Pure Appl. Opt. (1)

BQ Chen, JJ Stamnes, and K Stamnes, “Reconstruction algorithm for diffraction tomography of diffuse photon density waves in a random medium.” Pure Appl. Opt. 7, 1161–1180 (1998).
[CrossRef]

Trends. Neurosci. (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain functions,” Trends. Neurosci. 20, 435 (1997) .
[CrossRef] [PubMed]

Other (13)

J. H. Hoogenraad, M. B.van der Mark, S. B. Colak, G.W. ’t Hooft, and E.S.van der Linden, “First Results from the Philips Optical Mammoscope”, Proc.SPIE / BiOS-97 (SanRemo, 1997 ).

S. K. Gayen, M. E. Zevallos, B. B. Das, and R. R. Alfano, “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Trends in Opt. And Photonics, ed. J. G. Fujimoto and M. S. Patterson.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Imaging and Characterization of Breast tumors using a laser-pulse mammograph,” SPIE3597 (1999).

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, ed. G. Muller, B. Chance, Rl. Alfano, S. Arridge, J. Beuthan, E. Gratton, M Kaschke, B. Masters, S. Svanberg, and P. van der Zee, Proc SPIEIS11, 35–64 (1993).

K. M. Case and P. F. Zweifel, in Linear Transport Theory (Addison -Wesley,MA,1967).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978) Vol.. 19.

P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill,1953).

Claus Muller, Foundations of the Mathematical theory of Electromagnetic Waves (Springer-Verlag,New York,1969).

See, also , A.J. Banos, in Dipole Radiation In the Presence of a Conducting Half-Space (Pergamon Press, New York, 1966).

E. Wolf, “Principles and Development of Diffraction Tomography” in Trends in Optics, ed. A. Consortini (Academic Press, San Diego, 1996).
[CrossRef]

For the angular spectrum representation in a slab field and for an excellent account of the angular spectrum representation see, L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York,1995).

J. Ripoll and M. Nieto-Vesperinas, “Reflection and Transmission Coefficients of Diffuse Photon Density Waves, (to be published).

J. Ripoll and M. Nieto-Vesperinas, “Spatial Resolution of Diffuse Photon Density Waves, ” J. Opt. Soc. Am.A (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (38)

Equations on this page are rendered with MathJax. Learn more.

J ( r , ω ) = Φ ( r , ω ) S 1 ( r , ω ) 3 μ ' s ( r , ω )
Φ ( r , ω ) = . J ( r , ω ) S 0 ( r , ω ) ( i ω c + μ a ( r , ω ) )
( 2 + k d 2 ) Φ ( r , ω ) = 3 μ ¯ s δ μ a Φ ( r , ω ) + · ( δ μ s μ s Φ ( r , ω ) )
· ( 3 δ μ s μ s S 1 ( r , ω ) ) 3 μ ¯ s ( r ) S 0 ( r , ω ) .
k d 2 = 3 μ ¯ s ( i ω c μ ¯ a )
n ̂ · J ( r , ω ) = α Φ ( r , ω ) .
( 2 + k d 2 ) G ( r , r , ω ) = 4 π δ ( r r ) ,
G d ( r , r , ω ) = exp ( i k d r r ) r r ,
with k d = 3 μ ¯ s ( i ω c μ ¯ a ) .
Φ ( r , ω ) = 3 μ ¯ s 4 π V S 0 ( r , ω ) G d ( r , r , ω ) d 3 r + 3 4 π V S 1 ( r , ω ) . G d ( r , r , ω ) d 3 r
+ 1 4 π S ( 3 α μ ¯ s G d ( r , r , ω ) + G d ( r , r , ω ) . n ̂ ) Φ ( r , ω ) d S
3 μ ¯ s 4 π V ( μ a ( r ) μ ¯ a ) Φ ( r , ω ) G d ( r , r ) d 3 r
+ 1 4 π V μ s ( r ) μ ¯ s μ s ( r ) Φ ( r , ω ) . G d ( r , r ) d 3 r .
Φ ( r , ω ) = 3 μ ¯ s 4 π V S 0 ( r , ω ) G d ( r , r , ω ) d 3 r + 3 4 π V S 1 ( r , ω ) . G d ( r , r , ω ) d 3 r
+ 1 4 π S ( 3 α μ ¯ s G d ( r , r , ω ) + G d ( r , r , ω ) . n ̂ ) Φ ( r , ω ) d S .
Φ P ( r , ω ) = Φ M ( r , ω ) Φ H ( r , ω ) = 3 μ ¯ s 4 π V ( μ a ( r ) μ ¯ a ) Φ H ( r , ω ) G d ( r , r , ω ) d 3 r
+ 1 4 π V μ s ( r ) μ ¯ s μ s ( r ) ϕ H ( r , ω ) . G d ( r , r , ω ) d 3 r .
Φ H ( r , ω ) 3 μ ¯ s 4 π V S 0 ( r , ω ) G d ( r , r , ω ) d 3 r + 3 4 π V S 1 ( r , ω ) . G d ( r , r , ω ) d 3 r
+ 1 4 π S ( 3 α μ ¯ s G d ( r , r , ω ) + G d ( r , r , ω ) . n ̂ ) Φ M ( r , ω ) d S .
G ( r , r , ω ) = d p d q i 2 π m exp ( i p ( x x ) + i q ( y y ) + i m z z ) ,
Φ ̂ P ( p , q , z d , ω ) = z s z d d z T ̂ a ( p , q , z , ω ) K ̂ ( p , q , z d z , ω )
+ z s z d d z T ̂ s ( p , q , z , ω ) . k K ̂ ( p , q , z d z , ω ) ,
T a ( r , ω ) = 3 μ ¯ s 4 π ( μ a ( r ) μ ¯ a ) Φ H ( r , ω ) ,
T s ( r , ω ) = 1 4 π ( 1 D ( r , ω ) D ) ϕ H ( r , ω ) ,
and K ̂ ( p , q , z d z , ω ) = i 2 π m exp ( i m ( z d z ) ) .
T ̂ a ( p , q , z , ω ) = t a ( p , q , z ) { Φ + exp ( + i m 0 z ) + Φ exp ( i m 0 z ) } ,
T ̂ s ( p , q , z , ω ) = t d ( p , q , z ) { k 0 + Φ + exp ( + i m 0 z ) + k 0 Φ exp ( i m 0 z ) } ,
t ̂ a ( p , q , z , ω ) = 3 4 π [ μ ¯ a δ ( p p 0 ) δ ( q q 0 ) μ a ( p p 0 , q q 0 ) ] ,
t ̂ D ( p , q , z ) = 1 4 D ¯ [ D ¯ δ ( p p 0 ) δ ( q q 0 ) D ( p p 0 , q q 0 ) ] ,
and k 0 + = x ̂ p 0 + y ̂ q 0 + z ̂ m 0 , k 0 = x ̂ p 0 + y ̂ q 0 z ̂ m 0 .
Φ 0 ( x , y , z , ω ) = Φ + exp ( i p 0 x + i q o y + i m 0 z ) + Φ exp ( i p 0 x + i q 0 y i m 0 z ) .
Φ ̑ ( z d , ω j ) = i = 1 N [ t ̂ a ( z i ) f ̂ 1 ( z i , ω j ) + t ̂ d ( z i ) f ̂ 2 ( z i , ω j ) ] for j = 1 : 2 N .
f ̂ 1 ( z i , ω j ) = Δ z i { Φ + exp ( + i m 0 z i ) + Φ exp ( i m 0 z i ) } K ̂ ( z d z i , ω ) ,
f ̂ 2 ( z i , ω j ) = Δ z i { ( p p 0 + q q 0 + m m 0 ) Φ + exp ( + i m 0 z i ) +
( p p 0 + q q 0 m m 0 ) Φ exp ( i m 0 z i ) } K ̂ ( z d z i , ω ) .
Φ ̲ ̂ = f ̳ ̂ · t ̂ ̲ .
t ̂ ̲ = ( f ̂ ̳ ) 1 · Φ ̂ ̲ .
t ̲ ( x , y , z i ) = 1 4 π 2 dpdq ( f ̂ ̳ ( p , q ) ) 1 · Φ ̂ ̲ ( p , q ) exp ( ipx iqy ) for i = 1 : N

Metrics