Abstract

By an accurate theoretical analysis, an equivalent point is found where the filtered optic wave lengths of the two acoustic-optic reactions of “e in o out” and “o in e out” are the same with the same acoustic frequency. Two cases of δ=0 and δ≠0 are discussed and compared. The merits of the equivalent point is discussed in different points of view. The discussions conclude that the parameters set around the equivalent point leading to the optimum designing.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. W. Dixon, IEEE. J. Quantum Electron. QE-3, 2 (1967).
    [CrossRef]
  2. I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
    [CrossRef]
  3. T. Yano and A. Watanabe, Appl. Opt. 15, 2250 (1976).
    [CrossRef] [PubMed]
  4. Mo Fuqin, Acta Optica Sinica, 6, 446 (1986).
  5. V. M. Epikhin, F. L. Vizen and L. L. Pal'tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).
  6. P. A. Gass and J. R. Sambles, Opt. Lett. 16, 429 (1991).
    [CrossRef] [PubMed]
  7. Ren Quan etc., Acta Optica Sinica, 13, 568 (1993).
  8. A. W. Warner, D. L. White and W. A. Bonner, J. Appl. Phys. 43, 4489 (1972).
    [CrossRef]

Other

R. W. Dixon, IEEE. J. Quantum Electron. QE-3, 2 (1967).
[CrossRef]

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

T. Yano and A. Watanabe, Appl. Opt. 15, 2250 (1976).
[CrossRef] [PubMed]

Mo Fuqin, Acta Optica Sinica, 6, 446 (1986).

V. M. Epikhin, F. L. Vizen and L. L. Pal'tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

P. A. Gass and J. R. Sambles, Opt. Lett. 16, 429 (1991).
[CrossRef] [PubMed]

Ren Quan etc., Acta Optica Sinica, 13, 568 (1993).

A. W. Warner, D. L. White and W. A. Bonner, J. Appl. Phys. 43, 4489 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The vectors and phasemat chcondition

Fig. 2.
Fig. 2.

The acoustic wave vector via optic incident angle

Fig.3.
Fig.3.

The acoustic frequency via optic incident angle

Fig. 4.
Fig. 4.

The equivalent point of the acoustic vector angle

Fig. 5.
Fig. 5.

The equivalent point of the acoustic frequency

Fig. 6.
Fig. 6.

The two equivalent points are put together

Fig. 7.
Fig. 7.

Experiment result for comparing two AOTF cells : One is 23° cutt in gand the other is 56° cutting. Both of incident angle are perpendicular. Data collected by FT-IR System 2000 from PERKINELMER

Tables (1)

Tables Icon

TABLE: The numeric computing results of the equivalent point

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

K aeo = K ie K do K i = 2 πni λ
K aeo sin θ aeo = K ie sin θ i K do sin θ do and K d = 2 πnd λ
K aeo cos θ aeo = K ie cos θ i K do cos θ do K a = 2 π f a V a
δ ( λ ) = n ie ( 0 , λ ) n do ( 0 , λ ) 2 n o ( λ ) 4.55 × 10 4
n ie ( θ i , λ ) = ( cos 2 θ i ( 1 + δ ) 2 n o 2 ( λ ) + sin 2 θ i n e 2 ( λ ) ) 1 2
n do ( θ i , λ ) = ( cos 2 [ θ de ( θ i , λ ) ] ( 1 + δ ) 2 n o 2 ( λ ) + sin 2 [ θ de ( θ i , λ ) ] n o 2 ( λ ) ) 1 2
k e = ( 1 + δ ) 2 n o 2 n e 2 tan θ i k o = ( 1 δ ) 2 n o 2 n o 2 tan θ do
tan [ θ do ( θ i , λ ) ] = [ ( 1 + δ ) n o ( λ ) ( 1 δ ) n e ( λ ) ] 2 tan θ i
tan [ θ aeo ( θ i , λ ) ] = n ie ( θ i , λ ) sin θ i n do ( θ i , λ ) sin [ θ do ( θ i , λ ) ] n ie ( θ i , λ ) cos θ i n do ( θ i , λ ) cos [ θ do ( θ i , λ ) ]
f aeo ( θ i , λ ) = V a λ 0 [ n ie 2 ( θ i , λ ) + n do 2 ( θ i , λ ) 2 n ie ( θ i , λ ) n do ( θ i , λ ) cos ( θ do ( θ i , λ ) θ i ) ] 1 2
n io ( θ i , λ ) = ( cos 2 θ i ( 1 δ ) 2 n o 2 ( λ ) + sin 2 θ i n o 2 ( λ ) ) 1 2
n de ( θ i , λ ) = ( cos 2 [ θ de ( θ i , λ ) ] ( 1 + δ ) 2 n o 2 ( λ ) + sin 2 [ θ de ( θ i , λ ) ] n e 2 ( λ ) ) 1 2
tan [ θ de ( θ i , λ ) ] = [ ( 1 δ ) n e ( λ ) ( 1 + δ ) n o ( λ ) ] 2 tan θ i
tan [ θ aoe ( θ i , λ ) ] = n io ( θ i , λ ) sin θ i n de ( θ i , λ ) sin [ θ de ( θ i , λ ) ] n io ( θ i , λ ) cos θ i n de ( θ i , λ ) cos [ θ de ( θ i , λ ) ]
f aoe ( θ i , λ ) = V a λ 0 [ n io 2 ( θ i , λ ) + n de 2 ( θ i , λ ) 2 n io ( θ i , λ ) n de ( θ i , λ ) cos ( θ de ( θ i , λ ) θ i ) ] 1 2
( a 2 + 1 ) 2 x 6 4 ( a 6 + a 4 + a 2 ) x 2 4 ( a 6 + a 4 ) = 0

Metrics