Abstract

We demonstrate a novel variable beam splitter using a tripod-linkage of atomic states, the physics of which is based on the laser control of the non-adiabatic coupling between two degenerate dark states. This coupling and the splitting ratio is determined by the time delay of the interaction induced by two of the laser beams.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. R. Berman, Atom Interferometry, (Academic Press, 1997).
  2. R. Deutschmann, W. Ertmer and H. Wallis, "Reflection and diffraction of atomic de broglie waves by an evanescent laser wave," Phys. Rev. A 47, 2169-2185 (1993).
    [CrossRef] [PubMed]
  3. S. Glasgow, P. Meystre, M. Wilkens and E.M. Wright, "Theory of an atomic beam splitter based on velocity-tuned resonances," Phys. Rev. A 43, 2455-2463 (1991).
    [CrossRef] [PubMed]
  4. T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel and J. Mlynek, "Magneto-optical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
    [CrossRef] [PubMed]
  5. M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu and E.M. Wright, "Atomic velocity selection using stimulated raman transitions," Phys. Rev. Lett. 66, 2297-2300 (1991).
    [CrossRef] [PubMed]
  6. P. Marte, P. Zoller and J. L. Hall, "Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems," Phys. Rev. A 44, 4118-4121 (1991).
    [CrossRef] [PubMed]
  7. M. Weitz, B. C. Young and S. Chu, "Atomic interferometer based on adiabatic population transfer," Phys. Rev. Lett. 73, 2563-2566 (1994).
    [CrossRef] [PubMed]
  8. U. Gaubatz, P. Rudecki, S. Schiemann and K. Bergmann, "Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laserfields," J. Chem. Phys. 92, 5363-5376 (1990).
    [CrossRef]
  9. K. Bergmann, H. Theuer and B.W. Shore, "Coherent population transfer among quantum states of atoms and molecules," Rev. Mod. Phys. 70, 1003-1026 (1998).
    [CrossRef]
  10. R. Unanyan, M. Fleischhauer, B. W. Shore and K. Bergmann, "Robust creation and phase- sensitive probing of superposition states via stimulated raman adiabatic passage (STIRAP) with degenerate dark states," Opt. Commun. 155, 144-154 (1998).
    [CrossRef]
  11. R. Unanyan, B. W. Shore and K. Bergmann, Phys. Rev. A submitted.
  12. H. Theuer and K. Bergmann, "Atomic beam deflection by coherent momentum transfer and the dependence on small magnetic fields," Eur. Phys. J. D 2, 279-289 (1998).
    [CrossRef]

Other

P. R. Berman, Atom Interferometry, (Academic Press, 1997).

R. Deutschmann, W. Ertmer and H. Wallis, "Reflection and diffraction of atomic de broglie waves by an evanescent laser wave," Phys. Rev. A 47, 2169-2185 (1993).
[CrossRef] [PubMed]

S. Glasgow, P. Meystre, M. Wilkens and E.M. Wright, "Theory of an atomic beam splitter based on velocity-tuned resonances," Phys. Rev. A 43, 2455-2463 (1991).
[CrossRef] [PubMed]

T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel and J. Mlynek, "Magneto-optical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
[CrossRef] [PubMed]

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu and E.M. Wright, "Atomic velocity selection using stimulated raman transitions," Phys. Rev. Lett. 66, 2297-2300 (1991).
[CrossRef] [PubMed]

P. Marte, P. Zoller and J. L. Hall, "Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems," Phys. Rev. A 44, 4118-4121 (1991).
[CrossRef] [PubMed]

M. Weitz, B. C. Young and S. Chu, "Atomic interferometer based on adiabatic population transfer," Phys. Rev. Lett. 73, 2563-2566 (1994).
[CrossRef] [PubMed]

U. Gaubatz, P. Rudecki, S. Schiemann and K. Bergmann, "Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laserfields," J. Chem. Phys. 92, 5363-5376 (1990).
[CrossRef]

K. Bergmann, H. Theuer and B.W. Shore, "Coherent population transfer among quantum states of atoms and molecules," Rev. Mod. Phys. 70, 1003-1026 (1998).
[CrossRef]

R. Unanyan, M. Fleischhauer, B. W. Shore and K. Bergmann, "Robust creation and phase- sensitive probing of superposition states via stimulated raman adiabatic passage (STIRAP) with degenerate dark states," Opt. Commun. 155, 144-154 (1998).
[CrossRef]

R. Unanyan, B. W. Shore and K. Bergmann, Phys. Rev. A submitted.

H. Theuer and K. Bergmann, "Atomic beam deflection by coherent momentum transfer and the dependence on small magnetic fields," Eur. Phys. J. D 2, 279-289 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1.
Figure 1.

(a) The relevant level scheme for the realization of the beam splitter using the tripod-linkage system. Initially only the state 3 P 0 is populated. (b) The geometry of the setup.

Figure 2.
Figure 2.

Variation of the profiles of the metastable neon atomic beam with the relative displacement of the σ-polarized Stokes-laser beams. From top to bottom the displacement is +250 μm, +50 μm, 0 μm, -150 μm and -250 μm. The diameter of the laser beams is 0.6 mm. The solid lines result from a fit to the data.

Figure 3.
Figure 3.

(a) Intensity of the two components of the coherently split atomic beam as a function of the displacement D of the σ --Stokes laser measured in units of the laser beam width 2ω 0 ≈ 0.6mm. The open circles give the flux of atoms in state ∣3-⟩ (M = +1) while the dots refer to state ∣3+⟩ (M = -1). The sum of both count rates is also shown (triangles). The relevant laser powers are PP = 46 mW, PS = 34 mW corresponding to Ω P ≈ 100 MHz and Ω± ≈ 30 MHz. (b) Numerical simulation for the intensities of both beam splitter channels as a function of D. The gray line gives the total population in the 3 P 2 state.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E P = e z Re E π ( x ) e i ( k π y ω π t )
E S 1 = Re E + ( x ) e i ( k σ z ω σ t ) e + E S 2 = Re E ( x ) e i ( + k σ z ω σ t ) e
E π ( x ) = E 0 exp [ ( x x 0 ) 2 ω 0 2 ] E ± ( x ) = E 1 exp [ ( x ± x 1 ) 2 ω 1 2 ]
1 = 3 P 0 , M = 0 , p x , p y ħ k π , p z
2 = 3 P 1 , M = 0 , p x , p y , p z
3 = 3 P 2 , M = 1 , p x , p y , p z ħ k σ
3 + = 3 P 2 , M = 1 , p x , p y , p z + ħ k σ .
Φ 1 = cos θ 1 sin θ ( sin φ 3 + cos φ 3 + )
Φ 2 = cos φ 3 sin φ 3 +
tan φ = Ω + Ω and tan θ = Ω π Ω + 2 + Ω 2 .
Ψ = B 1 Φ 1 + B 2 Φ 2 .
B 1 = cos γ B 2 = sin γ
γ = + φ ˙ ( τ ) sin θ ( τ ) .
Ψ 1 = sin γ 3 + cos γ 3 + or Ψ 2 = cos γ 3 sin γ 3 +

Metrics