Abstract

Gas phase C60 is resonantly excited using picosecond infrared (IR) pulses from a free electron laser. The excitation can be very high, reaching levels where the thermal emission of electrons from C60 is observed. The excitation is much more efficient when the IR radiation is chirped to lower frequencies during the excitation process. The excitation process is modeled and the results are compared to the experiment.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Leisner, K. Athanassenas, O. Echt, O. Kandler, D. Kreisle, and E. Recknagel, "Hot tungsten clusters - competition between atom ejection and thermionic emission," Z. Physik D 20, 127 (1991).
    [CrossRef]
  2. A. Amrein, R. Simpson, and P. Hackett, "Delayed ionization following photoexcitation of small clusters of refractory elements - nanofilaments," J. Chem. Phys. 94, 4663 (1991).
    [CrossRef]
  3. E. E. B. Campbell, G. Ulmer, and I. V. Hertel, "Delayed ionization of C60 and C70," Phys. Rev. Lett. 67, 1986 (1991).
    [CrossRef] [PubMed]
  4. P. Wurz and K.R. Lykke, "Delayed electron emission from photoexcited C60," J. Chem. Phys. 95, 7008 (1991).
    [CrossRef]
  5. D. Ding, J. Huang, R.N. Compton, C. E. Klots and R. E. Haufler, "Cw laser ionization of C60 and C70," Phys. Rev. Lett. 73, 1084 (1994).
    [CrossRef] [PubMed]
  6. M. Hippler, M. Quack, R. Schwarz, G. Seyfang, S. Matt, T. Mark, "Infrared multiphoton excitation, dissociation and ionization of C60," Chem. Phys. Lett. 278, 111 (1997).
    [CrossRef]
  7. G. von Helden, I. Holleman, G. M. H. Knippels, A. F. G. van der Meer, and G. Meijer, "Infrared resonance enhanced multi photon ionization of fullerenes," Phys. Rev. Lett. 79, 5234 (1997).
    [CrossRef]
  8. G. von Helden, I. Holleman, A. J. A. van Roij, G. M. H. Knippels, A. F. G. van der Meer, and G. Meijer, "Shedding new light on thermionic electron emission of fullerenes," Phys. Rev. Lett. 81, 1825 (1998); http://mlfsilly.sci.kun.nl/`denizvh/IRREMPI.html
    [CrossRef]
  9. D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, "The free-electron-laser user facility FELIX," Infrared Phys. Technol. 36, 297 (1995); http://www.rijnh.nl/DEPARTMENTS/LASER/FELIX/felix.html
    [CrossRef]
  10. G.M.H. Knippels, A.F.G. van der Meer, R.F.X.A.M. Mols, D. Oepts, P.W. van Amersfoort, A. M. MacLeod, and W. A. Gillespie, "Feasibility of a far-infrared free-electron laser as a voltage- controlled oscilator," Infrared Phys. Technol. 37, 285 (1996).
    [CrossRef]
  11. D.S. Bethune, G. Meijer, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, Ch. A. Brown and M. S. de Vries, "Vibrational raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters," Chem. Phys. Lett. 179, 181 (1991).
    [CrossRef]
  12. V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov and E. A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry, Harwood Academic Publishers (1985).
  13. L. Nemes, R. S. Ram, P. F. Bernath, F. A. Tinker, M. C. Zumwalt, L. D. Lamb and D. R. Huffman, "Gas-phase infrared emission spectra of C60 and C70 - temperature-dependent studies," Chem. Phys. Lett. 218, 295 (1994).
    [CrossRef]
  14. C. E. Klots and R. N. Compton, "Evidence for thermionic emission from small aggregates," Surf. Rev. Lett. 3, 535 (1996).
    [CrossRef]

Other (14)

T. Leisner, K. Athanassenas, O. Echt, O. Kandler, D. Kreisle, and E. Recknagel, "Hot tungsten clusters - competition between atom ejection and thermionic emission," Z. Physik D 20, 127 (1991).
[CrossRef]

A. Amrein, R. Simpson, and P. Hackett, "Delayed ionization following photoexcitation of small clusters of refractory elements - nanofilaments," J. Chem. Phys. 94, 4663 (1991).
[CrossRef]

E. E. B. Campbell, G. Ulmer, and I. V. Hertel, "Delayed ionization of C60 and C70," Phys. Rev. Lett. 67, 1986 (1991).
[CrossRef] [PubMed]

P. Wurz and K.R. Lykke, "Delayed electron emission from photoexcited C60," J. Chem. Phys. 95, 7008 (1991).
[CrossRef]

D. Ding, J. Huang, R.N. Compton, C. E. Klots and R. E. Haufler, "Cw laser ionization of C60 and C70," Phys. Rev. Lett. 73, 1084 (1994).
[CrossRef] [PubMed]

M. Hippler, M. Quack, R. Schwarz, G. Seyfang, S. Matt, T. Mark, "Infrared multiphoton excitation, dissociation and ionization of C60," Chem. Phys. Lett. 278, 111 (1997).
[CrossRef]

G. von Helden, I. Holleman, G. M. H. Knippels, A. F. G. van der Meer, and G. Meijer, "Infrared resonance enhanced multi photon ionization of fullerenes," Phys. Rev. Lett. 79, 5234 (1997).
[CrossRef]

G. von Helden, I. Holleman, A. J. A. van Roij, G. M. H. Knippels, A. F. G. van der Meer, and G. Meijer, "Shedding new light on thermionic electron emission of fullerenes," Phys. Rev. Lett. 81, 1825 (1998); http://mlfsilly.sci.kun.nl/`denizvh/IRREMPI.html
[CrossRef]

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, "The free-electron-laser user facility FELIX," Infrared Phys. Technol. 36, 297 (1995); http://www.rijnh.nl/DEPARTMENTS/LASER/FELIX/felix.html
[CrossRef]

G.M.H. Knippels, A.F.G. van der Meer, R.F.X.A.M. Mols, D. Oepts, P.W. van Amersfoort, A. M. MacLeod, and W. A. Gillespie, "Feasibility of a far-infrared free-electron laser as a voltage- controlled oscilator," Infrared Phys. Technol. 37, 285 (1996).
[CrossRef]

D.S. Bethune, G. Meijer, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, Ch. A. Brown and M. S. de Vries, "Vibrational raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters," Chem. Phys. Lett. 179, 181 (1991).
[CrossRef]

V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov and E. A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry, Harwood Academic Publishers (1985).

L. Nemes, R. S. Ram, P. F. Bernath, F. A. Tinker, M. C. Zumwalt, L. D. Lamb and D. R. Huffman, "Gas-phase infrared emission spectra of C60 and C70 - temperature-dependent studies," Chem. Phys. Lett. 218, 295 (1994).
[CrossRef]

C. E. Klots and R. N. Compton, "Evidence for thermionic emission from small aggregates," Surf. Rev. Lett. 3, 535 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the experimental setup.

Fig. 2.
Fig. 2.

IR-REMPI spectrum of gas-phase C60.

Fig. 3.
Fig. 3.

IR-REMPI peak of gas-phase C60 recorded using a chirped (upper trace) and an non chirped (lower trace) excitation laser.

Fig. 4.
Fig. 4.

False-color representation of the frequency of the excitation laser during the chirped macropulse. The wavelength setting of FELIX corresponds to the one used on the peak of the resonance shown in the upper trace of Fig. 3.

Fig. 5.
Fig. 5.

IR absorption profiles of C60 at different internal energies (solid lines) together with three spectral profiles of FELIX (dashed curves).

Fig. 6.
Fig. 6.

Most probable excitation as a function of FELIX frequency. Shown is a simulation for a frequency chirped and a non chirped excitation laser.

Fig. 7.
Fig. 7.

Normalized internal energy distribution while scanning the non chirped FELIX pulse over the excitation line.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d n i dt = F i + 1 , i + F i 1 , i F i , i + 1 F i , i 1
F i , j = I ħ ω σ i , j · n i
A i , j = σ i , j ( ω ) · = 4 π 2 ω res · d j 2 ħc
σ i , i + 1 σ i + 1 , i = A i , i + 1 A i + 1 , i = g i + 1 g i
σ i , j ( ω ) = A i , j · f ( ω ω res )

Metrics