Abstract

We propose to use the sensitivity of the population transfer in three-level L-atoms to the relative phases and amplitudes of frequency-chirped short bichromatic laser pulses for coherent, fast and robust storage and processing of phase or intensity optical information. The information is being written into the excited state population which in a second step is transferred in a fast and robust way into a nondecaying storage level. It is shown that an arbitrary superposition of the ground states can be generated by controlling the relative phase between the laser pulses.

© 1999 Optical Society of America

Full Article  |  PDF Article
Related Articles
Population transfer in three-level Λ atoms with Doppler-broadened transition lines by a single frequency-chirped short laser pulse

G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei
J. Opt. Soc. Am. B 17(1) 107-113 (2000)

Creation of a coherent superposition of quantum states by a single frequency-chirped short laser pulse

G. P. Djotyan, J. S. Bakos, G. Demeter, Zs. Sörlei, J. Szigeti, and D. Dzsotjan
J. Opt. Soc. Am. B 25(2) 166-174 (2008)

Optical phase information writing and storage in populations of metastable quantum states

G. P. Djotyan, N. Sandor, J. S. Bakos, and Zs. Sörlei
J. Opt. Soc. Am. B 26(10) 1959-1966 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento Lett. 17, 333–338 (1976).
    [Crossref]
  2. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys.Rev.Lett. 61, 826–829 (1988).
    [Crossref] [PubMed]
  3. J. Lawall and M. Prentiss, “Demonstration of a novel atomic beam splitter,” Phys.Rev.Lett. 72, 993–996 (1994).
    [Crossref] [PubMed]
  4. J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys.Rev. A 40, 6741–6747 (1989).
    [Crossref] [PubMed]
  5. M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys.Rev.Lett. 67, p.1855–58 (1991).
    [Crossref] [PubMed]
  6. M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys.Rev.Lett. 73, 2563–2566 (1994).
    [Crossref] [PubMed]
  7. P. Marte, P. Zoller, and J. L. Hall, “Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems,” Phys. Rev.A 44, R4118–R4121.
  8. R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
    [Crossref]
  9. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).
  10. D. Kosachev, B. Matisov, and Yu. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt.Commun. 85, 209–212 (1991).
    [Crossref]
  11. N. V. Vitanov, “Analytic model of a three-state system driven by two laser pulses on two-photon resonance,” J.Phys.B: At. Mol. Opt. Phys. 31, 709–725 (1998).
    [Crossref]
  12. C. E. Caroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys.Rev.A 36, 724–729 (1987).
    [Crossref]
  13. G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei, “Theory of the adiabatic passage in two-level quantum systems with superpositional initial states,” J. of Modern Opt. 44, 1511–1523 (1997).
    [Crossref]

1998 (2)

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[Crossref]

N. V. Vitanov, “Analytic model of a three-state system driven by two laser pulses on two-photon resonance,” J.Phys.B: At. Mol. Opt. Phys. 31, 709–725 (1998).
[Crossref]

1997 (1)

G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei, “Theory of the adiabatic passage in two-level quantum systems with superpositional initial states,” J. of Modern Opt. 44, 1511–1523 (1997).
[Crossref]

1994 (2)

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys.Rev.Lett. 73, 2563–2566 (1994).
[Crossref] [PubMed]

J. Lawall and M. Prentiss, “Demonstration of a novel atomic beam splitter,” Phys.Rev.Lett. 72, 993–996 (1994).
[Crossref] [PubMed]

1991 (2)

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys.Rev.Lett. 67, p.1855–58 (1991).
[Crossref] [PubMed]

D. Kosachev, B. Matisov, and Yu. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt.Commun. 85, 209–212 (1991).
[Crossref]

1989 (1)

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys.Rev. A 40, 6741–6747 (1989).
[Crossref] [PubMed]

1988 (1)

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys.Rev.Lett. 61, 826–829 (1988).
[Crossref] [PubMed]

1987 (1)

C. E. Caroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys.Rev.A 36, 724–729 (1987).
[Crossref]

1976 (1)

E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento Lett. 17, 333–338 (1976).
[Crossref]

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).

Arimondo, E.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys.Rev.Lett. 61, 826–829 (1988).
[Crossref] [PubMed]

E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento Lett. 17, 333–338 (1976).
[Crossref]

Aspect, A.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys.Rev.Lett. 61, 826–829 (1988).
[Crossref] [PubMed]

Bakos, J. S.

G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei, “Theory of the adiabatic passage in two-level quantum systems with superpositional initial states,” J. of Modern Opt. 44, 1511–1523 (1997).
[Crossref]

Bergmann, K.

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[Crossref]

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys.Rev. A 40, 6741–6747 (1989).
[Crossref] [PubMed]

Caroll, C. E.

C. E. Caroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys.Rev.A 36, 724–729 (1987).
[Crossref]

Chu, S.

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys.Rev.Lett. 73, 2563–2566 (1994).
[Crossref] [PubMed]

Cohen-Tannoudji, C.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys.Rev.Lett. 61, 826–829 (1988).
[Crossref] [PubMed]

Demeter, G.

G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei, “Theory of the adiabatic passage in two-level quantum systems with superpositional initial states,” J. of Modern Opt. 44, 1511–1523 (1997).
[Crossref]

Djotyan, G. P.

G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei, “Theory of the adiabatic passage in two-level quantum systems with superpositional initial states,” J. of Modern Opt. 44, 1511–1523 (1997).
[Crossref]

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).

Fleischhauer, M.

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[Crossref]

Gaubatz, U.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys.Rev. A 40, 6741–6747 (1989).
[Crossref] [PubMed]

Hall, J. L.

P. Marte, P. Zoller, and J. L. Hall, “Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems,” Phys. Rev.A 44, R4118–R4121.

Hioe, F. T.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys.Rev. A 40, 6741–6747 (1989).
[Crossref] [PubMed]

C. E. Caroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys.Rev.A 36, 724–729 (1987).
[Crossref]

Kaiser, R.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys.Rev.Lett. 61, 826–829 (1988).
[Crossref] [PubMed]

Kosachev, D.

D. Kosachev, B. Matisov, and Yu. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt.Commun. 85, 209–212 (1991).
[Crossref]

Kuklinski, J. R.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys.Rev. A 40, 6741–6747 (1989).
[Crossref] [PubMed]

Lawall, J.

J. Lawall and M. Prentiss, “Demonstration of a novel atomic beam splitter,” Phys.Rev.Lett. 72, 993–996 (1994).
[Crossref] [PubMed]

Marte, P.

P. Marte, P. Zoller, and J. L. Hall, “Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems,” Phys. Rev.A 44, R4118–R4121.

Matisov, B.

D. Kosachev, B. Matisov, and Yu. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt.Commun. 85, 209–212 (1991).
[Crossref]

Orriols, G.

E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento Lett. 17, 333–338 (1976).
[Crossref]

Prentiss, M.

J. Lawall and M. Prentiss, “Demonstration of a novel atomic beam splitter,” Phys.Rev.Lett. 72, 993–996 (1994).
[Crossref] [PubMed]

Rozhdestvensky, Yu.

D. Kosachev, B. Matisov, and Yu. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt.Commun. 85, 209–212 (1991).
[Crossref]

Scully, M. O.

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys.Rev.Lett. 67, p.1855–58 (1991).
[Crossref] [PubMed]

Shore, B. W.

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[Crossref]

Sörlei, Zs.

G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei, “Theory of the adiabatic passage in two-level quantum systems with superpositional initial states,” J. of Modern Opt. 44, 1511–1523 (1997).
[Crossref]

Unanyan, R.

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[Crossref]

Vansteenkiste, N.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys.Rev.Lett. 61, 826–829 (1988).
[Crossref] [PubMed]

Vitanov, N. V.

N. V. Vitanov, “Analytic model of a three-state system driven by two laser pulses on two-photon resonance,” J.Phys.B: At. Mol. Opt. Phys. 31, 709–725 (1998).
[Crossref]

Weitz, M.

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys.Rev.Lett. 73, 2563–2566 (1994).
[Crossref] [PubMed]

Young, B. C.

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys.Rev.Lett. 73, 2563–2566 (1994).
[Crossref] [PubMed]

Zoller, P.

P. Marte, P. Zoller, and J. L. Hall, “Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems,” Phys. Rev.A 44, R4118–R4121.

J. of Modern Opt. (1)

G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sörlei, “Theory of the adiabatic passage in two-level quantum systems with superpositional initial states,” J. of Modern Opt. 44, 1511–1523 (1997).
[Crossref]

J.Phys.B: At. Mol. Opt. Phys. (1)

N. V. Vitanov, “Analytic model of a three-state system driven by two laser pulses on two-photon resonance,” J.Phys.B: At. Mol. Opt. Phys. 31, 709–725 (1998).
[Crossref]

Nuovo Cimento Lett. (1)

E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento Lett. 17, 333–338 (1976).
[Crossref]

Opt. Commun. (1)

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144–154 (1998).
[Crossref]

Opt.Commun. (1)

D. Kosachev, B. Matisov, and Yu. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt.Commun. 85, 209–212 (1991).
[Crossref]

Phys. Rev.A (1)

P. Marte, P. Zoller, and J. L. Hall, “Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems,” Phys. Rev.A 44, R4118–R4121.

Phys.Rev. A (1)

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys.Rev. A 40, 6741–6747 (1989).
[Crossref] [PubMed]

Phys.Rev.A (1)

C. E. Caroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys.Rev.A 36, 724–729 (1987).
[Crossref]

Phys.Rev.Lett. (4)

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys.Rev.Lett. 67, p.1855–58 (1991).
[Crossref] [PubMed]

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys.Rev.Lett. 73, 2563–2566 (1994).
[Crossref] [PubMed]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys.Rev.Lett. 61, 826–829 (1988).
[Crossref] [PubMed]

J. Lawall and M. Prentiss, “Demonstration of a novel atomic beam splitter,” Phys.Rev.Lett. 72, 993–996 (1994).
[Crossref] [PubMed]

Other (1)

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig.1.
Fig.1.

The scheme of the atomic system.

Fig.2.
Fig.2.

Dependence of the excited state population n 2fin on the phase Φ in for different values of population n 1in of the ground state ∣1⟩: n 1in = 1 (1); .8 (2); .6 (3); .5 (4).

Fig.3.
Fig.3.

Time dependence of the populations for n 1in =.7,n 3in =.3 at: (a) Φ in =0, (b) Φ in =π and ∣Ω1∣ = ∣Ω2∣ = Ω. The parameters applied are: ΩτL = 5, β τL2 = 5 ; green-n 1(t), blue-n 3(t), red-n 2(t).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

c 1 = Ω 1 * ( Ω 1 2 + Ω 2 2 ) a 1 ; c 3 = Ω 2 * ( Ω 1 2 + Ω 2 2 ) a 3 ; c 2 = a 2 exp [ i ε 21 ( t ) t ] ,
d dt C = i H ̂ C
H ̂ = f ( t ) ( 0 Ω 1 2 Ω 1 2 + Ω 2 2 0 Ω 1 2 + Ω 2 2 ε ( t ) f ( t ) Ω 1 2 + Ω 2 2 0 Ω 2 2 Ω 1 2 + Ω 2 2 0 ) ;
g + = ( Ω 1 * a 1 + Ω 1 * a 3 ) Ω 1 2 + Ω 2 2 = c 1 + c 3 ;
g ( ) = ( Ω 2 a 1 Ω 1 a 3 ) Ω 1 2 + Ω 2 2 = Ω 1 Ω 2 ( c 1 Ω 1 2 c 3 Ω 2 2 ) ,
d dt g ( + ) = iF ( t ) e ; d dt e ( t ) e = iF ( t ) g ( + ) ;
d dt g ( ) = 0 ,
g ( + ) fin = c 1 fin + c 2 fin = 0 ,
Ω 1 * a 1 fin = Ω 2 * a 3 fin
n 1 fin = n 3 fin ; and φ 1 fin φ 3 fin = Δ φ 13 fin = π + Δ Φ 12 ,
n 2 fin = 1 2 [ 1 + 2 n 1 in 1 n 1 in cos ( Δ ϕ 13 in + Δ Φ 12 ) ]
n 2 fin = 1 ( 1 + Ω 2 2 Ω 1 2 ) ,

Metrics