Abstract

A theory for carrier decay rates and a technique for measuring them are reported. Modification of the spontaneous emission rate of carriers by a semiconductor microcavity is investigated with 100-nm-thick bulk GaAs. Reabsorption makes the cavity-mode photoluminescence (PL) decay much faster than the square of the carrier density. Here reabsorption distortion is avoided by collecting PL that escapes the microcavity directly without multiple reflections: a ZnSe prism glued to the top mirror allows PL to escape at angles beyond the cutoff angle for total internal reflection without the prism. At these steep angles, the stop band of the top mirror has shifted to higher energy, so that it does not impede PL emission. Removal of most of the bottom mirror decreases the true carrier decay rate by only ≈25%, showing that the large enhancements deduced from cavity-mode PL are incorrect. Fully quantum mechanical computation including guided modes corroborates this conclusion. The prism technique could be used to study carrier dynamics and competition between guided and cavity modes in microcavities below and near threshold.

© 1999 Optical Society of America

Full Article  |  PDF Article
Related Articles
Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures

D. S. Chemla and D. A. B. Miller
J. Opt. Soc. Am. B 2(7) 1155-1173 (1985)

Transient grating studies of excitonic optical nonlinearities in GaAs/AlGaAs multiple-quantum-well structures

A. Miller, R. J. Manning, P. K. Milsom, D. C. Hutchings, D. W. Crust, and K. Woodbridge
J. Opt. Soc. Am. B 6(4) 567-578 (1989)

Photorefractive quantum wells: transverse Franz–Keldysh geometry

Q. Wang, R. M. Brubaker, D. D. Nolte, and M.R. Melloch
J. Opt. Soc. Am. B 9(9) 1626-1641 (1992)

References

  • View by:
  • |
  • |
  • |

  1. P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
    [Crossref]
  2. S. Haroche and J. M. Raimond, “Radiative properties of Rydberg states in resonant cavities,” 347–411 in B. Bederson and D. R. Bates, eds., Advances in Atomic and Molecular Physics 20 (Academic, New York, 1985).
    [Crossref]
  3. H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” 203–266 in P. R. Berman, ed., Cavity Quantum Electrodynamics (Academic, Boston, 1994).
  4. M. Kira, F. Jahnke, and S. W. Koch, “Microscopic theory of excitonic signatures in semiconductor photoluminescence,” Phys. Rev. Lett. 81, 3263–3266 (1998).
    [Crossref]
  5. L. C. Andreani, F. Tassone, and F. Bassani, “Radiative lifetime of free excitons in quantum wells,” Solid State Commun. 77, 641–645 (1991).
    [Crossref]
  6. D. S. Citrin, “Radiative lifetimes of excitons in semiconductor quantum wells,” Comments Cond. Mat. Phys. 16(5), 263–280 (1993).
  7. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
    [Crossref] [PubMed]
  8. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys., to be published.
  9. M. Kira, F. Jahnke, W Hoyer, and S. W. Koch, “Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures,” Prog. Quantum Electron., to be published.
  10. M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
    [Crossref]
  11. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  12. Cavity Quantum Electrodynamics, edited by P. R. Berman, (Academic Press, New York, 1994).
  13. G. BjÖrk, S. Machida, and K. Igata, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A,  44, 669–681 (1991).
    [Crossref] [PubMed]
  14. Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. BjÖrk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337–342 (1991).
    [Crossref]
  15. D. L. Huffaker, C. Lei, D. G. Deppe, C. J. Pinzone, J. G. Neff, and R. D. Dupuis, “Controlled spontaneous emission in room-temperature semiconductor microcavities,” Appl. Phys. Lett. 60, 3203–3205 (1992).
    [Crossref]
  16. K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi, Y. Lee, and T. Ishihara, “Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities,” Phys. Rev. Lett. 74, 3380–3383 (1995).
    [Crossref] [PubMed]
  17. L. A. Graham, D. L. Huffaker, Q. Deng, and D. G. Deppe, “Controlled spontaneous lifetime in microcavity confined InGaAlAs/GaAs quantum dots,” Appl. Phys. Lett. 72, 1670–1672 (1998).
    [Crossref]
  18. R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.
  19. H. K. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
    [Crossref]
  20. Y. Hanamaki, H. Kinoshita, H. Akiyama, N. Ogasawara, and Y. Shirki, “Spontaneous emission lifetime alteration in InGaAs/GaAs vertical-cavity surface-emitting laser structures,” Phys. Rev. B 56, R4379–4382 (1997).
    [Crossref]
  21. C. C. Lin, D. G. Deppe, and C. Lei, “Role of waveguide light emission in planar microcavities,” IEEE J. Quantum Electron. 30, 2304–2312 (1994).
    [Crossref]
  22. Analysis shows that reabsorption distortion can be avoided if a stationary carrier density is maintained in the active layer, e.g., by means of cw pumping. In this case, PL dynamics of this sample subjected to a weak perturbation (e.g., to a short pump pulse) will exactly reproduce dynamics of carriers (provided that the perturbation is sufficiently small).
  23. I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, J. L. Oudar, and E. V. K. Rao, “Nonguiding half-wave semiconductor microcavities displaying the exciton-photon mode splitting,” Appl. Phys. Lett. 65, 2516–2518 (1994).
    [Crossref]
  24. E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943Rarity945 (1994).
    [Crossref] [PubMed]
  25. H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, and G. Borghs, “High efficiency planar microcavity LED’s: comparison of design and experiment,” IEEE Phot. Tech. Lett. 7, 287Rarity289 (1995).
    [Crossref]
  26. H. De Neve, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, and G. Borghs, “Recycling of guided mode light emission in planar microcavity light emitting diodes,” Appl. Phys. Lett. 70, 799–801 (1997).
    [Crossref]
  27. H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
    [Crossref]
  28. H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
    [Crossref]
  29. R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, “Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence,” Phys. Rev. B 53, 10995–11007 (1996).
    [Crossref]
  30. E. Spiller, “Saturable resonator for visible light,” J. Opt. Soc. Am. 61, 669 (1971) and “Saturable optical resonator,” J. Appl. Phys. 43, 1673–1681 (1972).
  31. D. L. Huffaker and D. G. Deppe, “Spontaneous coupling to planar and index-confined quasimodes of Fabry-Pérot microcavities,” Appl. Phys. Lett. 67, 2594–2596 (1995).
    [Crossref]
  32. D. G. Deppe, T. -H. Oh, and D. L. Huffaker, “Eigenmode confinement in the dielectrically apertured Fabry-Perot microcavity,” IEEE Photon. Tech. Lett. 9, 713–715 (1997).
    [Crossref]
  33. F. Jahnke, M. Kira, and S. W. Koch, “Linear and nonlinear optical properties of excitons in semiconductor quantum well and microcavities,” Z. Physik B 104, 559–572 (1997).
    [Crossref]
  34. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998).
    [Crossref]

1998 (3)

M. Kira, F. Jahnke, and S. W. Koch, “Microscopic theory of excitonic signatures in semiconductor photoluminescence,” Phys. Rev. Lett. 81, 3263–3266 (1998).
[Crossref]

L. A. Graham, D. L. Huffaker, Q. Deng, and D. G. Deppe, “Controlled spontaneous lifetime in microcavity confined InGaAlAs/GaAs quantum dots,” Appl. Phys. Lett. 72, 1670–1672 (1998).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

1997 (7)

H. De Neve, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, and G. Borghs, “Recycling of guided mode light emission in planar microcavity light emitting diodes,” Appl. Phys. Lett. 70, 799–801 (1997).
[Crossref]

H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[Crossref]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

D. G. Deppe, T. -H. Oh, and D. L. Huffaker, “Eigenmode confinement in the dielectrically apertured Fabry-Perot microcavity,” IEEE Photon. Tech. Lett. 9, 713–715 (1997).
[Crossref]

F. Jahnke, M. Kira, and S. W. Koch, “Linear and nonlinear optical properties of excitons in semiconductor quantum well and microcavities,” Z. Physik B 104, 559–572 (1997).
[Crossref]

Y. Hanamaki, H. Kinoshita, H. Akiyama, N. Ogasawara, and Y. Shirki, “Spontaneous emission lifetime alteration in InGaAs/GaAs vertical-cavity surface-emitting laser structures,” Phys. Rev. B 56, R4379–4382 (1997).
[Crossref]

M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
[Crossref]

1996 (1)

R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, “Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence,” Phys. Rev. B 53, 10995–11007 (1996).
[Crossref]

1995 (3)

K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi, Y. Lee, and T. Ishihara, “Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities,” Phys. Rev. Lett. 74, 3380–3383 (1995).
[Crossref] [PubMed]

H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, and G. Borghs, “High efficiency planar microcavity LED’s: comparison of design and experiment,” IEEE Phot. Tech. Lett. 7, 287Rarity289 (1995).
[Crossref]

D. L. Huffaker and D. G. Deppe, “Spontaneous coupling to planar and index-confined quasimodes of Fabry-Pérot microcavities,” Appl. Phys. Lett. 67, 2594–2596 (1995).
[Crossref]

1994 (3)

C. C. Lin, D. G. Deppe, and C. Lei, “Role of waveguide light emission in planar microcavities,” IEEE J. Quantum Electron. 30, 2304–2312 (1994).
[Crossref]

I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, J. L. Oudar, and E. V. K. Rao, “Nonguiding half-wave semiconductor microcavities displaying the exciton-photon mode splitting,” Appl. Phys. Lett. 65, 2516–2518 (1994).
[Crossref]

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943Rarity945 (1994).
[Crossref] [PubMed]

1993 (1)

D. S. Citrin, “Radiative lifetimes of excitons in semiconductor quantum wells,” Comments Cond. Mat. Phys. 16(5), 263–280 (1993).

1992 (2)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

D. L. Huffaker, C. Lei, D. G. Deppe, C. J. Pinzone, J. G. Neff, and R. D. Dupuis, “Controlled spontaneous emission in room-temperature semiconductor microcavities,” Appl. Phys. Lett. 60, 3203–3205 (1992).
[Crossref]

1991 (3)

L. C. Andreani, F. Tassone, and F. Bassani, “Radiative lifetime of free excitons in quantum wells,” Solid State Commun. 77, 641–645 (1991).
[Crossref]

G. BjÖrk, S. Machida, and K. Igata, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A,  44, 669–681 (1991).
[Crossref] [PubMed]

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. BjÖrk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337–342 (1991).
[Crossref]

1990 (1)

H. K. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[Crossref]

1983 (1)

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

1971 (1)

E. Spiller, “Saturable resonator for visible light,” J. Opt. Soc. Am. 61, 669 (1971) and “Saturable optical resonator,” J. Appl. Phys. 43, 1673–1681 (1972).

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abram, I.

I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, J. L. Oudar, and E. V. K. Rao, “Nonguiding half-wave semiconductor microcavities displaying the exciton-photon mode splitting,” Appl. Phys. Lett. 65, 2516–2518 (1994).
[Crossref]

Akiyama, H.

Y. Hanamaki, H. Kinoshita, H. Akiyama, N. Ogasawara, and Y. Shirki, “Spontaneous emission lifetime alteration in InGaAs/GaAs vertical-cavity surface-emitting laser structures,” Phys. Rev. B 56, R4379–4382 (1997).
[Crossref]

Amra, C.

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

Anan, T.

H. K. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[Crossref]

Andreani, L. C.

L. C. Andreani, F. Tassone, and F. Bassani, “Radiative lifetime of free excitons in quantum wells,” Solid State Commun. 77, 641–645 (1991).
[Crossref]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

Baets, R.

H. De Neve, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, and G. Borghs, “Recycling of guided mode light emission in planar microcavity light emitting diodes,” Appl. Phys. Lett. 70, 799–801 (1997).
[Crossref]

H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, and G. Borghs, “High efficiency planar microcavity LED’s: comparison of design and experiment,” IEEE Phot. Tech. Lett. 7, 287Rarity289 (1995).
[Crossref]

Bassani, F.

L. C. Andreani, F. Tassone, and F. Bassani, “Radiative lifetime of free excitons in quantum wells,” Solid State Commun. 77, 641–645 (1991).
[Crossref]

Begon, C.

H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[Crossref]

Belarouci, A.

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

Berger, J. D.

M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
[Crossref]

BjÖrk, G.

G. BjÖrk, S. Machida, and K. Igata, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A,  44, 669–681 (1991).
[Crossref] [PubMed]

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. BjÖrk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337–342 (1991).
[Crossref]

Blondelle, J.

H. De Neve, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, and G. Borghs, “Recycling of guided mode light emission in planar microcavity light emitting diodes,” Appl. Phys. Lett. 70, 799–801 (1997).
[Crossref]

H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, and G. Borghs, “High efficiency planar microcavity LED’s: comparison of design and experiment,” IEEE Phot. Tech. Lett. 7, 287Rarity289 (1995).
[Crossref]

Boggavarapu, D.

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

Borghs, G.

H. De Neve, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, and G. Borghs, “Recycling of guided mode light emission in planar microcavity light emitting diodes,” Appl. Phys. Lett. 70, 799–801 (1997).
[Crossref]

H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, and G. Borghs, “High efficiency planar microcavity LED’s: comparison of design and experiment,” IEEE Phot. Tech. Lett. 7, 287Rarity289 (1995).
[Crossref]

Brorson, S. D.

H. K. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[Crossref]

Cho, A. Y.

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943Rarity945 (1994).
[Crossref] [PubMed]

Citrin, D. S.

D. S. Citrin, “Radiative lifetimes of excitons in semiconductor quantum wells,” Comments Cond. Mat. Phys. 16(5), 263–280 (1993).

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Daele, P. Van

H. De Neve, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, and G. Borghs, “Recycling of guided mode light emission in planar microcavity light emitting diodes,” Appl. Phys. Lett. 70, 799–801 (1997).
[Crossref]

H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, and G. Borghs, “High efficiency planar microcavity LED’s: comparison of design and experiment,” IEEE Phot. Tech. Lett. 7, 287Rarity289 (1995).
[Crossref]

Demeester, P.

H. De Neve, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, and G. Borghs, “Recycling of guided mode light emission in planar microcavity light emitting diodes,” Appl. Phys. Lett. 70, 799–801 (1997).
[Crossref]

H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, and G. Borghs, “High efficiency planar microcavity LED’s: comparison of design and experiment,” IEEE Phot. Tech. Lett. 7, 287Rarity289 (1995).
[Crossref]

Deng, Q.

L. A. Graham, D. L. Huffaker, Q. Deng, and D. G. Deppe, “Controlled spontaneous lifetime in microcavity confined InGaAlAs/GaAs quantum dots,” Appl. Phys. Lett. 72, 1670–1672 (1998).
[Crossref]

Deppe, D. G.

L. A. Graham, D. L. Huffaker, Q. Deng, and D. G. Deppe, “Controlled spontaneous lifetime in microcavity confined InGaAlAs/GaAs quantum dots,” Appl. Phys. Lett. 72, 1670–1672 (1998).
[Crossref]

D. G. Deppe, T. -H. Oh, and D. L. Huffaker, “Eigenmode confinement in the dielectrically apertured Fabry-Perot microcavity,” IEEE Photon. Tech. Lett. 9, 713–715 (1997).
[Crossref]

D. L. Huffaker and D. G. Deppe, “Spontaneous coupling to planar and index-confined quasimodes of Fabry-Pérot microcavities,” Appl. Phys. Lett. 67, 2594–2596 (1995).
[Crossref]

C. C. Lin, D. G. Deppe, and C. Lei, “Role of waveguide light emission in planar microcavities,” IEEE J. Quantum Electron. 30, 2304–2312 (1994).
[Crossref]

D. L. Huffaker, C. Lei, D. G. Deppe, C. J. Pinzone, J. G. Neff, and R. D. Dupuis, “Controlled spontaneous emission in room-temperature semiconductor microcavities,” Appl. Phys. Lett. 60, 3203–3205 (1992).
[Crossref]

Dupuis, R. D.

D. L. Huffaker, C. Lei, D. G. Deppe, C. J. Pinzone, J. G. Neff, and R. D. Dupuis, “Controlled spontaneous emission in room-temperature semiconductor microcavities,” Appl. Phys. Lett. 60, 3203–3205 (1992).
[Crossref]

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gibbs, H. M.

M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
[Crossref]

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys., to be published.

Goy, P.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

Graham, L. A.

L. A. Graham, D. L. Huffaker, Q. Deng, and D. G. Deppe, “Controlled spontaneous lifetime in microcavity confined InGaAlAs/GaAs quantum dots,” Appl. Phys. Lett. 72, 1670–1672 (1998).
[Crossref]

Gross, M.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

Hanamaki, Y.

Y. Hanamaki, H. Kinoshita, H. Akiyama, N. Ogasawara, and Y. Shirki, “Spontaneous emission lifetime alteration in InGaAs/GaAs vertical-cavity surface-emitting laser structures,” Phys. Rev. B 56, R4379–4382 (1997).
[Crossref]

Haroche, S.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

S. Haroche and J. M. Raimond, “Radiative properties of Rydberg states in resonant cavities,” 347–411 in B. Bederson and D. R. Bates, eds., Advances in Atomic and Molecular Physics 20 (Academic, New York, 1985).
[Crossref]

Horikoshi, Y.

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. BjÖrk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337–342 (1991).
[Crossref]

Houdré, R.

R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, “Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence,” Phys. Rev. B 53, 10995–11007 (1996).
[Crossref]

Hoyer, W

M. Kira, F. Jahnke, W Hoyer, and S. W. Koch, “Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures,” Prog. Quantum Electron., to be published.

Huffaker, D. L.

L. A. Graham, D. L. Huffaker, Q. Deng, and D. G. Deppe, “Controlled spontaneous lifetime in microcavity confined InGaAlAs/GaAs quantum dots,” Appl. Phys. Lett. 72, 1670–1672 (1998).
[Crossref]

D. G. Deppe, T. -H. Oh, and D. L. Huffaker, “Eigenmode confinement in the dielectrically apertured Fabry-Perot microcavity,” IEEE Photon. Tech. Lett. 9, 713–715 (1997).
[Crossref]

D. L. Huffaker and D. G. Deppe, “Spontaneous coupling to planar and index-confined quasimodes of Fabry-Pérot microcavities,” Appl. Phys. Lett. 67, 2594–2596 (1995).
[Crossref]

D. L. Huffaker, C. Lei, D. G. Deppe, C. J. Pinzone, J. G. Neff, and R. D. Dupuis, “Controlled spontaneous emission in room-temperature semiconductor microcavities,” Appl. Phys. Lett. 60, 3203–3205 (1992).
[Crossref]

Hunt, N. E. J.

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943Rarity945 (1994).
[Crossref] [PubMed]

Igata, K.

G. BjÖrk, S. Machida, and K. Igata, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A,  44, 669–681 (1991).
[Crossref] [PubMed]

Igeta, K.

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. BjÖrk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337–342 (1991).
[Crossref]

Ilegems, M.

R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, “Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence,” Phys. Rev. B 53, 10995–11007 (1996).
[Crossref]

Ippen, E. P.

H. K. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[Crossref]

Ishihara, T.

K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi, Y. Lee, and T. Ishihara, “Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities,” Phys. Rev. Lett. 74, 3380–3383 (1995).
[Crossref] [PubMed]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

Iung, S.

I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, J. L. Oudar, and E. V. K. Rao, “Nonguiding half-wave semiconductor microcavities displaying the exciton-photon mode splitting,” Appl. Phys. Lett. 65, 2516–2518 (1994).
[Crossref]

Jacquier, B.

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[Crossref]

Jahnke, F.

M. Kira, F. Jahnke, and S. W. Koch, “Microscopic theory of excitonic signatures in semiconductor photoluminescence,” Phys. Rev. Lett. 81, 3263–3266 (1998).
[Crossref]

M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
[Crossref]

F. Jahnke, M. Kira, and S. W. Koch, “Linear and nonlinear optical properties of excitons in semiconductor quantum well and microcavities,” Z. Physik B 104, 559–572 (1997).
[Crossref]

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys., to be published.

M. Kira, F. Jahnke, W Hoyer, and S. W. Koch, “Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures,” Prog. Quantum Electron., to be published.

Jin, R.

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

Jurdyc, A. M.

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

Khitrova, G.

M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
[Crossref]

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys., to be published.

Kimble, H. J.

H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” 203–266 in P. R. Berman, ed., Cavity Quantum Electrodynamics (Academic, Boston, 1994).

Kinoshita, H.

Y. Hanamaki, H. Kinoshita, H. Akiyama, N. Ogasawara, and Y. Shirki, “Spontaneous emission lifetime alteration in InGaAs/GaAs vertical-cavity surface-emitting laser structures,” Phys. Rev. B 56, R4379–4382 (1997).
[Crossref]

Kira, M.

M. Kira, F. Jahnke, and S. W. Koch, “Microscopic theory of excitonic signatures in semiconductor photoluminescence,” Phys. Rev. Lett. 81, 3263–3266 (1998).
[Crossref]

M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
[Crossref]

F. Jahnke, M. Kira, and S. W. Koch, “Linear and nonlinear optical properties of excitons in semiconductor quantum well and microcavities,” Z. Physik B 104, 559–572 (1997).
[Crossref]

M. Kira, F. Jahnke, W Hoyer, and S. W. Koch, “Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures,” Prog. Quantum Electron., to be published.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys., to be published.

Koch, S. W.

M. Kira, F. Jahnke, and S. W. Koch, “Microscopic theory of excitonic signatures in semiconductor photoluminescence,” Phys. Rev. Lett. 81, 3263–3266 (1998).
[Crossref]

M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
[Crossref]

F. Jahnke, M. Kira, and S. W. Koch, “Linear and nonlinear optical properties of excitons in semiconductor quantum well and microcavities,” Z. Physik B 104, 559–572 (1997).
[Crossref]

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

M. Kira, F. Jahnke, W Hoyer, and S. W. Koch, “Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures,” Prog. Quantum Electron., to be published.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys., to be published.

Kuszelewicz, R.

I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, J. L. Oudar, and E. V. K. Rao, “Nonguiding half-wave semiconductor microcavities displaying the exciton-photon mode splitting,” Appl. Phys. Lett. 65, 2516–2518 (1994).
[Crossref]

Lamarque, F.

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

Leavitt, R. P.

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

Lee, Y.

K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi, Y. Lee, and T. Ishihara, “Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities,” Phys. Rev. Lett. 74, 3380–3383 (1995).
[Crossref] [PubMed]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Lei, C.

C. C. Lin, D. G. Deppe, and C. Lei, “Role of waveguide light emission in planar microcavities,” IEEE J. Quantum Electron. 30, 2304–2312 (1994).
[Crossref]

D. L. Huffaker, C. Lei, D. G. Deppe, C. J. Pinzone, J. G. Neff, and R. D. Dupuis, “Controlled spontaneous emission in room-temperature semiconductor microcavities,” Appl. Phys. Lett. 60, 3203–3205 (1992).
[Crossref]

Licoppe, C.

I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, J. L. Oudar, and E. V. K. Rao, “Nonguiding half-wave semiconductor microcavities displaying the exciton-photon mode splitting,” Appl. Phys. Lett. 65, 2516–2518 (1994).
[Crossref]

Lin, C. C.

C. C. Lin, D. G. Deppe, and C. Lei, “Role of waveguide light emission in planar microcavities,” IEEE J. Quantum Electron. 30, 2304–2312 (1994).
[Crossref]

Lindmark, E.

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

Lynnes, O.

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

Machida, S.

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. BjÖrk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337–342 (1991).
[Crossref]

G. BjÖrk, S. Machida, and K. Igata, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A,  44, 669–681 (1991).
[Crossref] [PubMed]

Malik, R. J.

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943Rarity945 (1994).
[Crossref] [PubMed]

Micovic, M.

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943Rarity945 (1994).
[Crossref] [PubMed]

Monneret, S.

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

Moretti, P.

H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[Crossref]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

Nakamura, T.

K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi, Y. Lee, and T. Ishihara, “Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities,” Phys. Rev. Lett. 74, 3380–3383 (1995).
[Crossref] [PubMed]

Neff, J. G.

D. L. Huffaker, C. Lei, D. G. Deppe, C. J. Pinzone, J. G. Neff, and R. D. Dupuis, “Controlled spontaneous emission in room-temperature semiconductor microcavities,” Appl. Phys. Lett. 60, 3203–3205 (1992).
[Crossref]

Nelson, T. R.

M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
[Crossref]

Neve, H. De

H. De Neve, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, and G. Borghs, “Recycling of guided mode light emission in planar microcavity light emitting diodes,” Appl. Phys. Lett. 70, 799–801 (1997).
[Crossref]

H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, and G. Borghs, “High efficiency planar microcavity LED’s: comparison of design and experiment,” IEEE Phot. Tech. Lett. 7, 287Rarity289 (1995).
[Crossref]

Nishi, K.

H. K. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[Crossref]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

Oesterle, U.

R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, “Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence,” Phys. Rev. B 53, 10995–11007 (1996).
[Crossref]

Ogasawara, N.

Y. Hanamaki, H. Kinoshita, H. Akiyama, N. Ogasawara, and Y. Shirki, “Spontaneous emission lifetime alteration in InGaAs/GaAs vertical-cavity surface-emitting laser structures,” Phys. Rev. B 56, R4379–4382 (1997).
[Crossref]

Oh, T. -H.

D. G. Deppe, T. -H. Oh, and D. L. Huffaker, “Eigenmode confinement in the dielectrically apertured Fabry-Perot microcavity,” IEEE Photon. Tech. Lett. 9, 713–715 (1997).
[Crossref]

Oudar, J. L.

I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, J. L. Oudar, and E. V. K. Rao, “Nonguiding half-wave semiconductor microcavities displaying the exciton-photon mode splitting,” Appl. Phys. Lett. 65, 2516–2518 (1994).
[Crossref]

Pinzone, C. J.

D. L. Huffaker, C. Lei, D. G. Deppe, C. J. Pinzone, J. G. Neff, and R. D. Dupuis, “Controlled spontaneous emission in room-temperature semiconductor microcavities,” Appl. Phys. Lett. 60, 3203–3205 (1992).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Raimond, J. M.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

S. Haroche and J. M. Raimond, “Radiative properties of Rydberg states in resonant cavities,” 347–411 in B. Bederson and D. R. Bates, eds., Advances in Atomic and Molecular Physics 20 (Academic, New York, 1985).
[Crossref]

Rao, E. V. K.

I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, J. L. Oudar, and E. V. K. Rao, “Nonguiding half-wave semiconductor microcavities displaying the exciton-photon mode splitting,” Appl. Phys. Lett. 65, 2516–2518 (1994).
[Crossref]

Rigneault, H.

H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[Crossref]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

Robert, S.

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[Crossref]

Roux, G. Le

I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, J. L. Oudar, and E. V. K. Rao, “Nonguiding half-wave semiconductor microcavities displaying the exciton-photon mode splitting,” Appl. Phys. Lett. 65, 2516–2518 (1994).
[Crossref]

Schubert, E. F.

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943Rarity945 (1994).
[Crossref] [PubMed]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Shirki, Y.

Y. Hanamaki, H. Kinoshita, H. Akiyama, N. Ogasawara, and Y. Shirki, “Spontaneous emission lifetime alteration in InGaAs/GaAs vertical-cavity surface-emitting laser structures,” Phys. Rev. B 56, R4379–4382 (1997).
[Crossref]

Sivco, D. L.

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943Rarity945 (1994).
[Crossref] [PubMed]

Spiller, E.

E. Spiller, “Saturable resonator for visible light,” J. Opt. Soc. Am. 61, 669 (1971) and “Saturable optical resonator,” J. Appl. Phys. 43, 1673–1681 (1972).

Stanley, R. P.

R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, “Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence,” Phys. Rev. B 53, 10995–11007 (1996).
[Crossref]

Takamatsu, W.

K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi, Y. Lee, and T. Ishihara, “Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities,” Phys. Rev. Lett. 74, 3380–3383 (1995).
[Crossref] [PubMed]

Tanaka, K.

K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi, Y. Lee, and T. Ishihara, “Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities,” Phys. Rev. Lett. 74, 3380–3383 (1995).
[Crossref] [PubMed]

Tassone, F.

L. C. Andreani, F. Tassone, and F. Bassani, “Radiative lifetime of free excitons in quantum wells,” Solid State Commun. 77, 641–645 (1991).
[Crossref]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Tobin, M. S.

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

Weisbuch, C.

R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, “Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence,” Phys. Rev. B 53, 10995–11007 (1996).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

Wick, D. V.

M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
[Crossref]

Yamada, H.

H. K. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[Crossref]

Yamamoto, Y.

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. BjÖrk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337–342 (1991).
[Crossref]

Yamanishi, M.

K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi, Y. Lee, and T. Ishihara, “Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities,” Phys. Rev. Lett. 74, 3380–3383 (1995).
[Crossref] [PubMed]

Yokoyama, H. K.

H. K. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[Crossref]

Zydzik, G. J.

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943Rarity945 (1994).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

D. L. Huffaker, C. Lei, D. G. Deppe, C. J. Pinzone, J. G. Neff, and R. D. Dupuis, “Controlled spontaneous emission in room-temperature semiconductor microcavities,” Appl. Phys. Lett. 60, 3203–3205 (1992).
[Crossref]

L. A. Graham, D. L. Huffaker, Q. Deng, and D. G. Deppe, “Controlled spontaneous lifetime in microcavity confined InGaAlAs/GaAs quantum dots,” Appl. Phys. Lett. 72, 1670–1672 (1998).
[Crossref]

H. K. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
[Crossref]

I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, J. L. Oudar, and E. V. K. Rao, “Nonguiding half-wave semiconductor microcavities displaying the exciton-photon mode splitting,” Appl. Phys. Lett. 65, 2516–2518 (1994).
[Crossref]

H. De Neve, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, and G. Borghs, “Recycling of guided mode light emission in planar microcavity light emitting diodes,” Appl. Phys. Lett. 70, 799–801 (1997).
[Crossref]

D. L. Huffaker and D. G. Deppe, “Spontaneous coupling to planar and index-confined quasimodes of Fabry-Pérot microcavities,” Appl. Phys. Lett. 67, 2594–2596 (1995).
[Crossref]

Comments Cond. Mat. Phys. (1)

D. S. Citrin, “Radiative lifetimes of excitons in semiconductor quantum wells,” Comments Cond. Mat. Phys. 16(5), 263–280 (1993).

IEEE J. Quantum Electron. (1)

C. C. Lin, D. G. Deppe, and C. Lei, “Role of waveguide light emission in planar microcavities,” IEEE J. Quantum Electron. 30, 2304–2312 (1994).
[Crossref]

IEEE Phot. Tech. Lett. (1)

H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, and G. Borghs, “High efficiency planar microcavity LED’s: comparison of design and experiment,” IEEE Phot. Tech. Lett. 7, 287Rarity289 (1995).
[Crossref]

IEEE Photon. Tech. Lett. (1)

D. G. Deppe, T. -H. Oh, and D. L. Huffaker, “Eigenmode confinement in the dielectrically apertured Fabry-Perot microcavity,” IEEE Photon. Tech. Lett. 9, 713–715 (1997).
[Crossref]

J. Opt. Soc. Am. (1)

E. Spiller, “Saturable resonator for visible light,” J. Opt. Soc. Am. 61, 669 (1971) and “Saturable optical resonator,” J. Appl. Phys. 43, 1673–1681 (1972).

Opt. Commun. (1)

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. BjÖrk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337–342 (1991).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (2)

G. BjÖrk, S. Machida, and K. Igata, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A,  44, 669–681 (1991).
[Crossref] [PubMed]

H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[Crossref]

Phys. Rev. B (2)

Y. Hanamaki, H. Kinoshita, H. Akiyama, N. Ogasawara, and Y. Shirki, “Spontaneous emission lifetime alteration in InGaAs/GaAs vertical-cavity surface-emitting laser structures,” Phys. Rev. B 56, R4379–4382 (1997).
[Crossref]

R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, “Cavity-polariton photoluminescence in semiconductor microcavities: experimental evidence,” Phys. Rev. B 53, 10995–11007 (1996).
[Crossref]

Phys. Rev. Lett. (6)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi, Y. Lee, and T. Ishihara, “Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities,” Phys. Rev. Lett. 74, 3380–3383 (1995).
[Crossref] [PubMed]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs, “Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments,” Phys. Rev. Lett. 79, 5170–5173 (1997).
[Crossref]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

M. Kira, F. Jahnke, and S. W. Koch, “Microscopic theory of excitonic signatures in semiconductor photoluminescence,” Phys. Rev. Lett. 81, 3263–3266 (1998).
[Crossref]

Prog. Quantum Electron. (1)

M. Kira, F. Jahnke, W Hoyer, and S. W. Koch, “Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures,” Prog. Quantum Electron., to be published.

Rev. Mod. Phys. (1)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys., to be published.

Science (1)

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943Rarity945 (1994).
[Crossref] [PubMed]

Solid State Commun. (1)

L. C. Andreani, F. Tassone, and F. Bassani, “Radiative lifetime of free excitons in quantum wells,” Solid State Commun. 77, 641–645 (1991).
[Crossref]

SPIE (1)

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer dielectric microcavities,” SPIE 3133, 78–87 (1997).
[Crossref]

Z. Physik B (1)

F. Jahnke, M. Kira, and S. W. Koch, “Linear and nonlinear optical properties of excitons in semiconductor quantum well and microcavities,” Z. Physik B 104, 559–572 (1997).
[Crossref]

Other (5)

Analysis shows that reabsorption distortion can be avoided if a stationary carrier density is maintained in the active layer, e.g., by means of cw pumping. In this case, PL dynamics of this sample subjected to a weak perturbation (e.g., to a short pump pulse) will exactly reproduce dynamics of carriers (provided that the perturbation is sufficiently small).

S. Haroche and J. M. Raimond, “Radiative properties of Rydberg states in resonant cavities,” 347–411 in B. Bederson and D. R. Bates, eds., Advances in Atomic and Molecular Physics 20 (Academic, New York, 1985).
[Crossref]

H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” 203–266 in P. R. Berman, ed., Cavity Quantum Electrodynamics (Academic, Boston, 1994).

R. Jin, M. S. Tobin, R. P. Leavitt, H. M. Gibbs, G. Khitrova, D. Boggavarapu, O. Lynnes, E. Lindmark, F. Jahnke, and S. W. Koch, “Order of magnitude enhanced spontaneous emission from room-temperature bulkGaAs,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, ed. (Kluwer, Dordrecht,1996), p. 43.

Cavity Quantum Electrodynamics, edited by P. R. Berman, (Academic Press, New York, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Arrangement for pumping and detecting PL. A prism glued on the top of the sample permits the observation of PL that is free from multiple-layer interference; without the prism, it undergoes total internal reflection and goes into guided modes.

Fig. 2.
Fig. 2.

The 110 K PL spectrum including both the emission by the cavity mode and emission at steep angles through the prism. A normal-incidence reflection spectrum of the sample measured at room temperature is shown in the inset.

Fig. 3.
Fig. 3.

Experimental setup for steep-angle PL lifetime measurements undistorted by reabsorption by the GaAs layer.

Fig. 4.
Fig. 4.

PL decay times as a function of pump power at 110 K. (a) Decay times of steep- angle PL for two different reflectivities of the bottom mirror, ~78% and 99.9%. (b) Corresponding decay times of the cavity-mode PL emitted through the bottom mirror for the same mirror reflectivities.

Fig. 5.
Fig. 5.

Angular distribution of PL intensity emitted through the top mirror at room temperature (no prism). (a) Without and (b) with integration over the annulus shown in the inset.

Fig. 6.
Fig. 6.

Angular distribution of the PL intensity integrated over an annulus.

Fig. 7.
Fig. 7.

The calculated spectral position of the cavity peak with respect to the bulk GaAs PL measured at room temperature for (a) θ=0° and (b) θ=70°.

Fig. 8.
Fig. 8.

Microscopically computed electron-hole recombination rates γeh(N) for microcavities as used herein with different number N of quarterwave pairs in the bottom mirror. The top mirror has 22 pairs. A carrier density of 2×1011 cm-2 is assumed.

Fig. 9.
Fig. 9.

Electron-hole recombination rate as a function of the number of layers in the top mirror of Yokoyama et al. [19], showing very little cavity-QED enhancement.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

t b q h k e k + q = ( ε k , q ħ ω q i γ ) b q h k e k + q + ( f k + q e + f k h 1 ) Ω k , q + f k h f k + q e Ω q SE ,
t b q , q e q + q = i ( ω q ω q′ ) b q , q b q′ , q + 1 ħ k [ F q b q′ e k + q h k + F q′ b q h k e k + q ] ,
t f k e = 2 ħ q , q Re [ d cv * F q b q , q h k q e k ] ,
t f k h = 2 ħ q , q Re [ d cv * F q b q , q h k e k + q ] ,
Ω q SE = i F q d cv ,
Ω k , q = d cv [ q i F q b q b q , q k P d cv * b q h k e k + q ] + k V k k b q h k e k + q ,
γ eh = 2 ħ S n o k q , q Re [ d cv * F q b q , q h k q e k ] ,

Metrics