Abstract

Atoms in intense, high-frequency laser fields exhibit the remarkable property that they can be stable against ionization. We investigate the structure of stabilized wavepackets for a two-dimensional model hydrogen atom interacting with an intense, high frequency laser pulse as a function of the laser pulse ellipticity and laser pulse rise-time. The computed wavepackets are compared with the corresponding Kramers-Henneberger (K-H) ground states. Laser pulse turn-on effects are studied by contrasting the structure of the localized part of the wavepackets and the ionizing part of the wavepackets for three different ellipticities and for various pulse turn-on times.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
    [CrossRef]
  2. C. J. Joachain, M. Dörr, and N. J. Kylstra, “High intensity laser-atom physics,” Adv. Atom. Mol. Opt. Phys, (1999) to appear.
  3. J. Gersten and M. H. Mittleman, “The shift of atomic states by laser fields,” J. Phys. B 9, 2561–2572 (1976).
    [CrossRef]
  4. M. Gavrila, “Atomic structure and decay in high-frequency fields,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.435–510.
  5. M. Gavrila, “Stabilization of atoms in ultra-strong laser fields,” in Photon and Electron Collisions with Atoms and Molecules, edited by P. G. Burke and C. J. Joachain (Plenum Press, 1997) p.147–158.
    [CrossRef]
  6. R. Bhatt, B. Piraux, and K. Burnett, “Potential scattering of electrons in the presence of intense laser fields using the Kramers-Henneberger transformation,” Phys. Rev. A 37, 98–105 (1988).
    [CrossRef] [PubMed]
  7. J. N. Bardsley, A. Szöke, and M. Comella, “Multiphoton ionization from a short range potential by short-pulse lasers,” J. Phys. B 21, 3899–3916 (1988).
    [CrossRef]
  8. J. C. Wells, I. Simbotin, and M. Gavrila, “Physical Reality of Light-Induced Atomic States,” Phys. Rev. Lett. 80, 3479–3482 (1998).
    [CrossRef]
  9. P. Schlagheck, K. Hornberger, and A. Buchleitner, “Comment on ‘Physical Reality of Light-Induced Atomic States’,” Phys. Rev. Lett. 82, 664 (1999).
    [CrossRef]
  10. J. C. Wells, I. Simbotin, and M. Gavrila, “Wells, Simbotin and Gavrila reply,” Phys. Rev. Lett. 82, 665 (1999).
    [CrossRef]
  11. E. van Duijn, M. Gavrila, and H. G. Muller, “Multiply charged negative ions of hydrogen induced by superintense laser fields,” Phys. Rev. Lett. 77, 3759–3762 (1996).
    [CrossRef] [PubMed]
  12. Q. Su, J. H. Eberly, and J. Javanainen, “Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field,” Phys. Rev. Lett. 64, 862–865 (1990).
    [CrossRef] [PubMed]
  13. Q. Su and J. H. Eberly, “Suppression of ionization and atomic electron localization by short intense laser-pulses,” Phys. Rev. A 43, 2474–2479 (1991).
    [CrossRef] [PubMed]
  14. J.H. Eberly, R. Grobe, C. K. Law, and Q. Su, “Numerical experiments in strong and super-strong fields,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.301–334.
  15. K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamic stabilization of hydrogen in an intense, high frequency, pulsed laser field,” Phys. Rev. Lett. 66, 2601–2604 (1991).
    [CrossRef] [PubMed]
  16. K. C. Kulander, K. J. Schafer, and J. L. Krause, “Time-dependent studies of multiphoton processes,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.247–300.
  17. See e.g. J. Grochmalicki, M. Lewenstein, and K. Rzazewski, “Stabilization of atoms in superintense laser fields: is it real?,” Phys. Rev. Lett. 66, 1038–1041 (1991).
    [CrossRef] [PubMed]
  18. M. Dörr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, “Multiphoton processes in an intense laser field. 5. The high frequency regime,” Phys. Rev. A 43, 3729–3740 (1991).
    [CrossRef] [PubMed]
  19. R. M. Potvliege and R. Shakeshaft, “Nonperturbative treatment of multiphoton ionization within the Floquet framework,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.373–434.
  20. See however H. G. Muller, “An efficient propagation scheme for the time-dependent Schrödinger equation in the velocity gauge,” Laser Phys. 9, 138–148 (1999).
  21. M. Protopapas, D. G. Lappas, and P. L. Knight, “Strong field ionization in arbitrary laser polarizations,” Phys. Rev. Lett. 79, 4550–4553 (1997).
    [CrossRef]
  22. A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 59, R2652–R2655 (1998).
    [CrossRef]
  23. V. C. Reed, P. L. Knight, and K. Burnett, “Suppression of ionization in superintense fields without dichotomy,” Phys. Rev. Lett. 67, 1415–1418 (1991).
    [CrossRef] [PubMed]
  24. M. Pont and R. Shakeshaft, “Observability of atomic stabilization in an intense short pulse of radiation,” Phys. Rev. A 44, R4110–R4113 (1991).
    [CrossRef]

1999 (3)

P. Schlagheck, K. Hornberger, and A. Buchleitner, “Comment on ‘Physical Reality of Light-Induced Atomic States’,” Phys. Rev. Lett. 82, 664 (1999).
[CrossRef]

J. C. Wells, I. Simbotin, and M. Gavrila, “Wells, Simbotin and Gavrila reply,” Phys. Rev. Lett. 82, 665 (1999).
[CrossRef]

See however H. G. Muller, “An efficient propagation scheme for the time-dependent Schrödinger equation in the velocity gauge,” Laser Phys. 9, 138–148 (1999).

1998 (2)

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 59, R2652–R2655 (1998).
[CrossRef]

J. C. Wells, I. Simbotin, and M. Gavrila, “Physical Reality of Light-Induced Atomic States,” Phys. Rev. Lett. 80, 3479–3482 (1998).
[CrossRef]

1997 (2)

M. Protopapas, D. G. Lappas, and P. L. Knight, “Strong field ionization in arbitrary laser polarizations,” Phys. Rev. Lett. 79, 4550–4553 (1997).
[CrossRef]

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
[CrossRef]

1996 (1)

E. van Duijn, M. Gavrila, and H. G. Muller, “Multiply charged negative ions of hydrogen induced by superintense laser fields,” Phys. Rev. Lett. 77, 3759–3762 (1996).
[CrossRef] [PubMed]

1991 (6)

V. C. Reed, P. L. Knight, and K. Burnett, “Suppression of ionization in superintense fields without dichotomy,” Phys. Rev. Lett. 67, 1415–1418 (1991).
[CrossRef] [PubMed]

M. Pont and R. Shakeshaft, “Observability of atomic stabilization in an intense short pulse of radiation,” Phys. Rev. A 44, R4110–R4113 (1991).
[CrossRef]

Q. Su and J. H. Eberly, “Suppression of ionization and atomic electron localization by short intense laser-pulses,” Phys. Rev. A 43, 2474–2479 (1991).
[CrossRef] [PubMed]

K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamic stabilization of hydrogen in an intense, high frequency, pulsed laser field,” Phys. Rev. Lett. 66, 2601–2604 (1991).
[CrossRef] [PubMed]

See e.g. J. Grochmalicki, M. Lewenstein, and K. Rzazewski, “Stabilization of atoms in superintense laser fields: is it real?,” Phys. Rev. Lett. 66, 1038–1041 (1991).
[CrossRef] [PubMed]

M. Dörr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, “Multiphoton processes in an intense laser field. 5. The high frequency regime,” Phys. Rev. A 43, 3729–3740 (1991).
[CrossRef] [PubMed]

1990 (1)

Q. Su, J. H. Eberly, and J. Javanainen, “Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field,” Phys. Rev. Lett. 64, 862–865 (1990).
[CrossRef] [PubMed]

1988 (2)

R. Bhatt, B. Piraux, and K. Burnett, “Potential scattering of electrons in the presence of intense laser fields using the Kramers-Henneberger transformation,” Phys. Rev. A 37, 98–105 (1988).
[CrossRef] [PubMed]

J. N. Bardsley, A. Szöke, and M. Comella, “Multiphoton ionization from a short range potential by short-pulse lasers,” J. Phys. B 21, 3899–3916 (1988).
[CrossRef]

1976 (1)

J. Gersten and M. H. Mittleman, “The shift of atomic states by laser fields,” J. Phys. B 9, 2561–2572 (1976).
[CrossRef]

Bardsley, J. N.

J. N. Bardsley, A. Szöke, and M. Comella, “Multiphoton ionization from a short range potential by short-pulse lasers,” J. Phys. B 21, 3899–3916 (1988).
[CrossRef]

Bhatt, R.

R. Bhatt, B. Piraux, and K. Burnett, “Potential scattering of electrons in the presence of intense laser fields using the Kramers-Henneberger transformation,” Phys. Rev. A 37, 98–105 (1988).
[CrossRef] [PubMed]

Buchleitner, A.

P. Schlagheck, K. Hornberger, and A. Buchleitner, “Comment on ‘Physical Reality of Light-Induced Atomic States’,” Phys. Rev. Lett. 82, 664 (1999).
[CrossRef]

Burnett, K.

V. C. Reed, P. L. Knight, and K. Burnett, “Suppression of ionization in superintense fields without dichotomy,” Phys. Rev. Lett. 67, 1415–1418 (1991).
[CrossRef] [PubMed]

R. Bhatt, B. Piraux, and K. Burnett, “Potential scattering of electrons in the presence of intense laser fields using the Kramers-Henneberger transformation,” Phys. Rev. A 37, 98–105 (1988).
[CrossRef] [PubMed]

Comella, M.

J. N. Bardsley, A. Szöke, and M. Comella, “Multiphoton ionization from a short range potential by short-pulse lasers,” J. Phys. B 21, 3899–3916 (1988).
[CrossRef]

Dörr, M.

M. Dörr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, “Multiphoton processes in an intense laser field. 5. The high frequency regime,” Phys. Rev. A 43, 3729–3740 (1991).
[CrossRef] [PubMed]

C. J. Joachain, M. Dörr, and N. J. Kylstra, “High intensity laser-atom physics,” Adv. Atom. Mol. Opt. Phys, (1999) to appear.

Eberly, J. H.

Q. Su and J. H. Eberly, “Suppression of ionization and atomic electron localization by short intense laser-pulses,” Phys. Rev. A 43, 2474–2479 (1991).
[CrossRef] [PubMed]

Q. Su, J. H. Eberly, and J. Javanainen, “Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field,” Phys. Rev. Lett. 64, 862–865 (1990).
[CrossRef] [PubMed]

Eberly, J.H.

J.H. Eberly, R. Grobe, C. K. Law, and Q. Su, “Numerical experiments in strong and super-strong fields,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.301–334.

Gavrila, M.

J. C. Wells, I. Simbotin, and M. Gavrila, “Wells, Simbotin and Gavrila reply,” Phys. Rev. Lett. 82, 665 (1999).
[CrossRef]

J. C. Wells, I. Simbotin, and M. Gavrila, “Physical Reality of Light-Induced Atomic States,” Phys. Rev. Lett. 80, 3479–3482 (1998).
[CrossRef]

E. van Duijn, M. Gavrila, and H. G. Muller, “Multiply charged negative ions of hydrogen induced by superintense laser fields,” Phys. Rev. Lett. 77, 3759–3762 (1996).
[CrossRef] [PubMed]

M. Gavrila, “Atomic structure and decay in high-frequency fields,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.435–510.

M. Gavrila, “Stabilization of atoms in ultra-strong laser fields,” in Photon and Electron Collisions with Atoms and Molecules, edited by P. G. Burke and C. J. Joachain (Plenum Press, 1997) p.147–158.
[CrossRef]

Gersten, J.

J. Gersten and M. H. Mittleman, “The shift of atomic states by laser fields,” J. Phys. B 9, 2561–2572 (1976).
[CrossRef]

Grobe, R.

J.H. Eberly, R. Grobe, C. K. Law, and Q. Su, “Numerical experiments in strong and super-strong fields,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.301–334.

Grochmalicki, J.

See e.g. J. Grochmalicki, M. Lewenstein, and K. Rzazewski, “Stabilization of atoms in superintense laser fields: is it real?,” Phys. Rev. Lett. 66, 1038–1041 (1991).
[CrossRef] [PubMed]

Hornberger, K.

P. Schlagheck, K. Hornberger, and A. Buchleitner, “Comment on ‘Physical Reality of Light-Induced Atomic States’,” Phys. Rev. Lett. 82, 664 (1999).
[CrossRef]

Javanainen, J.

Q. Su, J. H. Eberly, and J. Javanainen, “Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field,” Phys. Rev. Lett. 64, 862–865 (1990).
[CrossRef] [PubMed]

Joachain, C. J.

C. J. Joachain, M. Dörr, and N. J. Kylstra, “High intensity laser-atom physics,” Adv. Atom. Mol. Opt. Phys, (1999) to appear.

Keitel, C. H.

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
[CrossRef]

Knight, P. L.

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 59, R2652–R2655 (1998).
[CrossRef]

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
[CrossRef]

M. Protopapas, D. G. Lappas, and P. L. Knight, “Strong field ionization in arbitrary laser polarizations,” Phys. Rev. Lett. 79, 4550–4553 (1997).
[CrossRef]

V. C. Reed, P. L. Knight, and K. Burnett, “Suppression of ionization in superintense fields without dichotomy,” Phys. Rev. Lett. 67, 1415–1418 (1991).
[CrossRef] [PubMed]

Krause, J. L.

K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamic stabilization of hydrogen in an intense, high frequency, pulsed laser field,” Phys. Rev. Lett. 66, 2601–2604 (1991).
[CrossRef] [PubMed]

K. C. Kulander, K. J. Schafer, and J. L. Krause, “Time-dependent studies of multiphoton processes,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.247–300.

Kulander, K. C.

K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamic stabilization of hydrogen in an intense, high frequency, pulsed laser field,” Phys. Rev. Lett. 66, 2601–2604 (1991).
[CrossRef] [PubMed]

K. C. Kulander, K. J. Schafer, and J. L. Krause, “Time-dependent studies of multiphoton processes,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.247–300.

Kylstra, N. J.

C. J. Joachain, M. Dörr, and N. J. Kylstra, “High intensity laser-atom physics,” Adv. Atom. Mol. Opt. Phys, (1999) to appear.

Lappas, D. G.

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 59, R2652–R2655 (1998).
[CrossRef]

M. Protopapas, D. G. Lappas, and P. L. Knight, “Strong field ionization in arbitrary laser polarizations,” Phys. Rev. Lett. 79, 4550–4553 (1997).
[CrossRef]

Law, C. K.

J.H. Eberly, R. Grobe, C. K. Law, and Q. Su, “Numerical experiments in strong and super-strong fields,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.301–334.

Lewenstein, M.

See e.g. J. Grochmalicki, M. Lewenstein, and K. Rzazewski, “Stabilization of atoms in superintense laser fields: is it real?,” Phys. Rev. Lett. 66, 1038–1041 (1991).
[CrossRef] [PubMed]

Mittleman, M. H.

J. Gersten and M. H. Mittleman, “The shift of atomic states by laser fields,” J. Phys. B 9, 2561–2572 (1976).
[CrossRef]

Muller, H. G.

See however H. G. Muller, “An efficient propagation scheme for the time-dependent Schrödinger equation in the velocity gauge,” Laser Phys. 9, 138–148 (1999).

E. van Duijn, M. Gavrila, and H. G. Muller, “Multiply charged negative ions of hydrogen induced by superintense laser fields,” Phys. Rev. Lett. 77, 3759–3762 (1996).
[CrossRef] [PubMed]

Patel, A.

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 59, R2652–R2655 (1998).
[CrossRef]

Piraux, B.

R. Bhatt, B. Piraux, and K. Burnett, “Potential scattering of electrons in the presence of intense laser fields using the Kramers-Henneberger transformation,” Phys. Rev. A 37, 98–105 (1988).
[CrossRef] [PubMed]

Pont, M.

M. Pont and R. Shakeshaft, “Observability of atomic stabilization in an intense short pulse of radiation,” Phys. Rev. A 44, R4110–R4113 (1991).
[CrossRef]

Potvliege, R. M.

M. Dörr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, “Multiphoton processes in an intense laser field. 5. The high frequency regime,” Phys. Rev. A 43, 3729–3740 (1991).
[CrossRef] [PubMed]

R. M. Potvliege and R. Shakeshaft, “Nonperturbative treatment of multiphoton ionization within the Floquet framework,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.373–434.

Protopapas, M.

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 59, R2652–R2655 (1998).
[CrossRef]

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
[CrossRef]

M. Protopapas, D. G. Lappas, and P. L. Knight, “Strong field ionization in arbitrary laser polarizations,” Phys. Rev. Lett. 79, 4550–4553 (1997).
[CrossRef]

Proulx, D.

M. Dörr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, “Multiphoton processes in an intense laser field. 5. The high frequency regime,” Phys. Rev. A 43, 3729–3740 (1991).
[CrossRef] [PubMed]

Reed, V. C.

V. C. Reed, P. L. Knight, and K. Burnett, “Suppression of ionization in superintense fields without dichotomy,” Phys. Rev. Lett. 67, 1415–1418 (1991).
[CrossRef] [PubMed]

Rzazewski, K.

See e.g. J. Grochmalicki, M. Lewenstein, and K. Rzazewski, “Stabilization of atoms in superintense laser fields: is it real?,” Phys. Rev. Lett. 66, 1038–1041 (1991).
[CrossRef] [PubMed]

Schafer, K. J.

K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamic stabilization of hydrogen in an intense, high frequency, pulsed laser field,” Phys. Rev. Lett. 66, 2601–2604 (1991).
[CrossRef] [PubMed]

K. C. Kulander, K. J. Schafer, and J. L. Krause, “Time-dependent studies of multiphoton processes,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.247–300.

Schlagheck, P.

P. Schlagheck, K. Hornberger, and A. Buchleitner, “Comment on ‘Physical Reality of Light-Induced Atomic States’,” Phys. Rev. Lett. 82, 664 (1999).
[CrossRef]

Shakeshaft, R.

M. Pont and R. Shakeshaft, “Observability of atomic stabilization in an intense short pulse of radiation,” Phys. Rev. A 44, R4110–R4113 (1991).
[CrossRef]

M. Dörr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, “Multiphoton processes in an intense laser field. 5. The high frequency regime,” Phys. Rev. A 43, 3729–3740 (1991).
[CrossRef] [PubMed]

R. M. Potvliege and R. Shakeshaft, “Nonperturbative treatment of multiphoton ionization within the Floquet framework,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.373–434.

Simbotin, I.

J. C. Wells, I. Simbotin, and M. Gavrila, “Wells, Simbotin and Gavrila reply,” Phys. Rev. Lett. 82, 665 (1999).
[CrossRef]

J. C. Wells, I. Simbotin, and M. Gavrila, “Physical Reality of Light-Induced Atomic States,” Phys. Rev. Lett. 80, 3479–3482 (1998).
[CrossRef]

Su, Q.

Q. Su and J. H. Eberly, “Suppression of ionization and atomic electron localization by short intense laser-pulses,” Phys. Rev. A 43, 2474–2479 (1991).
[CrossRef] [PubMed]

Q. Su, J. H. Eberly, and J. Javanainen, “Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field,” Phys. Rev. Lett. 64, 862–865 (1990).
[CrossRef] [PubMed]

J.H. Eberly, R. Grobe, C. K. Law, and Q. Su, “Numerical experiments in strong and super-strong fields,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.301–334.

Szöke, A.

J. N. Bardsley, A. Szöke, and M. Comella, “Multiphoton ionization from a short range potential by short-pulse lasers,” J. Phys. B 21, 3899–3916 (1988).
[CrossRef]

van Duijn, E.

E. van Duijn, M. Gavrila, and H. G. Muller, “Multiply charged negative ions of hydrogen induced by superintense laser fields,” Phys. Rev. Lett. 77, 3759–3762 (1996).
[CrossRef] [PubMed]

Wells, J. C.

J. C. Wells, I. Simbotin, and M. Gavrila, “Wells, Simbotin and Gavrila reply,” Phys. Rev. Lett. 82, 665 (1999).
[CrossRef]

J. C. Wells, I. Simbotin, and M. Gavrila, “Physical Reality of Light-Induced Atomic States,” Phys. Rev. Lett. 80, 3479–3482 (1998).
[CrossRef]

J. Phys. B (2)

J. Gersten and M. H. Mittleman, “The shift of atomic states by laser fields,” J. Phys. B 9, 2561–2572 (1976).
[CrossRef]

J. N. Bardsley, A. Szöke, and M. Comella, “Multiphoton ionization from a short range potential by short-pulse lasers,” J. Phys. B 21, 3899–3916 (1988).
[CrossRef]

Laser Phys. (1)

See however H. G. Muller, “An efficient propagation scheme for the time-dependent Schrödinger equation in the velocity gauge,” Laser Phys. 9, 138–148 (1999).

Phys. Rev. A (5)

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 59, R2652–R2655 (1998).
[CrossRef]

M. Pont and R. Shakeshaft, “Observability of atomic stabilization in an intense short pulse of radiation,” Phys. Rev. A 44, R4110–R4113 (1991).
[CrossRef]

Q. Su and J. H. Eberly, “Suppression of ionization and atomic electron localization by short intense laser-pulses,” Phys. Rev. A 43, 2474–2479 (1991).
[CrossRef] [PubMed]

R. Bhatt, B. Piraux, and K. Burnett, “Potential scattering of electrons in the presence of intense laser fields using the Kramers-Henneberger transformation,” Phys. Rev. A 37, 98–105 (1988).
[CrossRef] [PubMed]

M. Dörr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, “Multiphoton processes in an intense laser field. 5. The high frequency regime,” Phys. Rev. A 43, 3729–3740 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (9)

See e.g. J. Grochmalicki, M. Lewenstein, and K. Rzazewski, “Stabilization of atoms in superintense laser fields: is it real?,” Phys. Rev. Lett. 66, 1038–1041 (1991).
[CrossRef] [PubMed]

K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamic stabilization of hydrogen in an intense, high frequency, pulsed laser field,” Phys. Rev. Lett. 66, 2601–2604 (1991).
[CrossRef] [PubMed]

J. C. Wells, I. Simbotin, and M. Gavrila, “Physical Reality of Light-Induced Atomic States,” Phys. Rev. Lett. 80, 3479–3482 (1998).
[CrossRef]

P. Schlagheck, K. Hornberger, and A. Buchleitner, “Comment on ‘Physical Reality of Light-Induced Atomic States’,” Phys. Rev. Lett. 82, 664 (1999).
[CrossRef]

J. C. Wells, I. Simbotin, and M. Gavrila, “Wells, Simbotin and Gavrila reply,” Phys. Rev. Lett. 82, 665 (1999).
[CrossRef]

E. van Duijn, M. Gavrila, and H. G. Muller, “Multiply charged negative ions of hydrogen induced by superintense laser fields,” Phys. Rev. Lett. 77, 3759–3762 (1996).
[CrossRef] [PubMed]

Q. Su, J. H. Eberly, and J. Javanainen, “Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field,” Phys. Rev. Lett. 64, 862–865 (1990).
[CrossRef] [PubMed]

V. C. Reed, P. L. Knight, and K. Burnett, “Suppression of ionization in superintense fields without dichotomy,” Phys. Rev. Lett. 67, 1415–1418 (1991).
[CrossRef] [PubMed]

M. Protopapas, D. G. Lappas, and P. L. Knight, “Strong field ionization in arbitrary laser polarizations,” Phys. Rev. Lett. 79, 4550–4553 (1997).
[CrossRef]

Rep. Prog. Phys. (1)

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
[CrossRef]

Other (6)

C. J. Joachain, M. Dörr, and N. J. Kylstra, “High intensity laser-atom physics,” Adv. Atom. Mol. Opt. Phys, (1999) to appear.

M. Gavrila, “Atomic structure and decay in high-frequency fields,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.435–510.

M. Gavrila, “Stabilization of atoms in ultra-strong laser fields,” in Photon and Electron Collisions with Atoms and Molecules, edited by P. G. Burke and C. J. Joachain (Plenum Press, 1997) p.147–158.
[CrossRef]

K. C. Kulander, K. J. Schafer, and J. L. Krause, “Time-dependent studies of multiphoton processes,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.247–300.

J.H. Eberly, R. Grobe, C. K. Law, and Q. Su, “Numerical experiments in strong and super-strong fields,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.301–334.

R. M. Potvliege and R. Shakeshaft, “Nonperturbative treatment of multiphoton ionization within the Floquet framework,” in Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, 1992), p.373–434.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Figure 1.
Figure 1.

Snapshots of the magnitude squared of the wavepackets as a function of ellipticity, taken after 12 cycles of a laser pulse having angular frequency ω = 1 and peak electric field E 0 = 15. Distances (X,Y) are shown in atomic units (a.u.).

Figure 2.
Figure 2.

The K-H ground states for α 0 = 15 and ellipticities corresponding to those of Fig. 1. Distances (X,Y) are shown in atomic units (a.u.).

Figure 3.
Figure 3.

Snapshots of the magnitude squared of the wavepackets taken after 10, 20 and 30 cycles of a laser pulse with turn-on times of 1, 4, 8 and 12 cycles, angular frequency ω = 1, peak electric field E 0 = 15 and linear polarization. The color scale is chosen to emphasize the structure of the localized part of the wavepackets. Distances (X,Y) are shown in atomic units (a.u.).

Figure 4.
Figure 4.

Same as in Fig. 3 except the color scale is chosen to emphasize the ionizing part of the wavepackets.

Figure 5.
Figure 5.

Snapshots of the magnitude squared of the wavepackets taken after 10, 20 and 30 cycles of a laser pulse with turn-on times of 1, 4, 8 and 12 cycles, angular frequency ω = 1, peak electric field E 0 = 15 and ellipticity = 0.5. The color scale is chosen to emphasize the structure of the localized part of the wavepackets. Distances (X,Y) are shown in atomic units (a.u.).

Figure 6.
Figure 6.

Same as in Fig. 5 except the color scale is chosen to emphasize the ionizing part of the wavepackets.

Figure 7.
Figure 7.

Snapshots of the magnitude squared of the wavepackets taken after 10, 20 and 30 cycles of a laser pulse with turn-on times of 1, 4, 8 and 12 cycles, angular frequency ω = 1, peak electric field E 0 = 15 and circular polarization. The color scale is chosen to emphasize the structure of the localized part of the wavepackets. Distances (X,Y) are shown in atomic units (a.u.).

Figure 8.
Figure 8.

Same as in Fig. 7 except the color scale is chosen to emphasize the ionizing part of the wavepackets.

Figure 9.
Figure 9.

(a) Norm of the wavefunction on a log scale as a function of time with laser pulse turn-on times of 1, 4, 8 and 12 cycles and linear (a), elliptical, = 0.5, (b) and circular polarization (c).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

i t Ψ r t = [ 1 2 ( p 1 c A ( t ) ) 2 + V ( r ) ] Ψ r t .
A ( t ) = f ( t ) E 0 c ω ( x ̂ sin ωt + y ̂ cos ωt ) ,
α ( t ) = 1 c t dt A ( t ) ,
α 0 = E 0 ω 2 .
V ( r ) = 1 r 2 + a 2 ,
V ( r α ( t ) ) = 1 r α ( t ) 2 + a 2 .
V ( α 0 , r ) = 1 T T 2 T 2 dt 1 r α ( t ) 2 + a 2 ,
[ 1 2 p 2 + V ( α 0 , r ) ] Ψ KH ( r ) = E KH Ψ KH ( r ) ,

Metrics