Abstract

Photoinduced long-period gratings are shown as versatile sensors for temperature, axial strain and index of refraction measurements. The principle of operation of such devices is discussed and the application to simultaneous temperature and strain is demonstrated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, Boston, 1988).
  2. D. A. Krohn, Fiber Optic Sensors (Instrument Society of America, North Carolina, 1992).
  3. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by transverse holographic method,” Opt. Lett. 14, 823 (1989).
    [Crossref] [PubMed]
  4. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Applications to reflection filter fabrication,” App. Phy. Lett. 32, 647 (1978).
    [Crossref]
  5. F. Bilodeau, K. O. Hill, B. Malo, D. Johnson, and I. Skinner, “Efficient narrowband LP01>-<LP02 mode convertorsfabricated in photosensitive fiber: Spectral response,” Elect. Lett. 27, 682 (1991).
    [Crossref]
  6. G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” in Conf. on Fiber Optic Sensors II, Proc. SPIE 798, 104 (1987).
  7. A. D. Kersey and T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Phot. Tech. Lett. 4,1183 (1992).
    [Crossref]
  8. G. Meltz, W. W. Morey, S. J. Hewlett, and J. D. Love, “Wavelength shifts in fiber Bragg gratings due to changes in the cladding properties,” in Topical Meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper PMB4, 225
  9. M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between temperature and strain effects using dual wavelength fiber grating sensors,” Elect. Lett. 30, 1085 (1994).
    [Crossref]
  10. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, J. E. Sipe, and T. E. Ergodan, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14, 58 (1996).
    [Crossref]
  11. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692 (1996).
    [Crossref] [PubMed]
  12. V. Bhatia, D. Campbell, R.O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648 (1997).
    [Crossref] [PubMed]
  13. J. B. Judkins, J. R. Pedrazzani, D. J. DiGiovanni, and A. M. Vengsarkar, “Temperature-insensitive long-period fiber gratings,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1996), postdeadline paper PD1.
  14. V. Bhatia, Properties and sensing applications of long-period gratings (Ph.D. Dissertation, Virginia Tech, Blacksburg, Virginia1996).
  15. A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Temperature-sensitive long-period fiber gratings for wideband tunable filters,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1999) ThJ5.
  16. V. Bhatia, D. Campbell, T. D’Alberto, G. Ten Eyck, D. Sherr, K. A. Murphy, and R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature-sensitivity for strain and refractive index sensing,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1997) paper FB1
  17. V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
    [Crossref]

1997 (2)

V. Bhatia, D. Campbell, R.O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648 (1997).
[Crossref] [PubMed]

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
[Crossref]

1996 (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, J. E. Sipe, and T. E. Ergodan, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14, 58 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692 (1996).
[Crossref] [PubMed]

1994 (1)

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between temperature and strain effects using dual wavelength fiber grating sensors,” Elect. Lett. 30, 1085 (1994).
[Crossref]

1992 (1)

A. D. Kersey and T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Phot. Tech. Lett. 4,1183 (1992).
[Crossref]

1991 (1)

F. Bilodeau, K. O. Hill, B. Malo, D. Johnson, and I. Skinner, “Efficient narrowband LP01>-<LP02 mode convertorsfabricated in photosensitive fiber: Spectral response,” Elect. Lett. 27, 682 (1991).
[Crossref]

1989 (1)

1987 (1)

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” in Conf. on Fiber Optic Sensors II, Proc. SPIE 798, 104 (1987).

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Applications to reflection filter fabrication,” App. Phy. Lett. 32, 647 (1978).
[Crossref]

Abramov, A. A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Temperature-sensitive long-period fiber gratings for wideband tunable filters,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1999) ThJ5.

Archambault, J. L.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between temperature and strain effects using dual wavelength fiber grating sensors,” Elect. Lett. 30, 1085 (1994).
[Crossref]

Berkoff, T. A.

A. D. Kersey and T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Phot. Tech. Lett. 4,1183 (1992).
[Crossref]

Bhatia, V.

V. Bhatia, D. Campbell, R.O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648 (1997).
[Crossref] [PubMed]

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692 (1996).
[Crossref] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, J. E. Sipe, and T. E. Ergodan, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14, 58 (1996).
[Crossref]

V. Bhatia, D. Campbell, T. D’Alberto, G. Ten Eyck, D. Sherr, K. A. Murphy, and R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature-sensitivity for strain and refractive index sensing,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1997) paper FB1

V. Bhatia, Properties and sensing applications of long-period gratings (Ph.D. Dissertation, Virginia Tech, Blacksburg, Virginia1996).

Bilodeau, F.

F. Bilodeau, K. O. Hill, B. Malo, D. Johnson, and I. Skinner, “Efficient narrowband LP01>-<LP02 mode convertorsfabricated in photosensitive fiber: Spectral response,” Elect. Lett. 27, 682 (1991).
[Crossref]

Campbell, D.

V. Bhatia, D. Campbell, R.O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648 (1997).
[Crossref] [PubMed]

V. Bhatia, D. Campbell, T. D’Alberto, G. Ten Eyck, D. Sherr, K. A. Murphy, and R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature-sensitivity for strain and refractive index sensing,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1997) paper FB1

Campbell, D. K.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
[Crossref]

Claus, R. O.

V. Bhatia, D. Campbell, T. D’Alberto, G. Ten Eyck, D. Sherr, K. A. Murphy, and R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature-sensitivity for strain and refractive index sensing,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1997) paper FB1

Claus, R.O.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
[Crossref]

V. Bhatia, D. Campbell, R.O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648 (1997).
[Crossref] [PubMed]

Culshaw, B.

J. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, Boston, 1988).

D’Alberto, T.

V. Bhatia, D. Campbell, T. D’Alberto, G. Ten Eyck, D. Sherr, K. A. Murphy, and R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature-sensitivity for strain and refractive index sensing,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1997) paper FB1

D’Alberto, T. G.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
[Crossref]

Dakin, J.

J. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, Boston, 1988).

Dakin, J. P.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between temperature and strain effects using dual wavelength fiber grating sensors,” Elect. Lett. 30, 1085 (1994).
[Crossref]

DiGiovanni, D. J.

J. B. Judkins, J. R. Pedrazzani, D. J. DiGiovanni, and A. M. Vengsarkar, “Temperature-insensitive long-period fiber gratings,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1996), postdeadline paper PD1.

Dunphy, J. R.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” in Conf. on Fiber Optic Sensors II, Proc. SPIE 798, 104 (1987).

Ergodan, T. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, J. E. Sipe, and T. E. Ergodan, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14, 58 (1996).
[Crossref]

Farina, J. D.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” in Conf. on Fiber Optic Sensors II, Proc. SPIE 798, 104 (1987).

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Applications to reflection filter fabrication,” App. Phy. Lett. 32, 647 (1978).
[Crossref]

Glenn, W. H.

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by transverse holographic method,” Opt. Lett. 14, 823 (1989).
[Crossref] [PubMed]

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” in Conf. on Fiber Optic Sensors II, Proc. SPIE 798, 104 (1987).

Hale, A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Temperature-sensitive long-period fiber gratings for wideband tunable filters,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1999) ThJ5.

Hewlett, S. J.

G. Meltz, W. W. Morey, S. J. Hewlett, and J. D. Love, “Wavelength shifts in fiber Bragg gratings due to changes in the cladding properties,” in Topical Meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper PMB4, 225

Hill, K. O.

F. Bilodeau, K. O. Hill, B. Malo, D. Johnson, and I. Skinner, “Efficient narrowband LP01>-<LP02 mode convertorsfabricated in photosensitive fiber: Spectral response,” Elect. Lett. 27, 682 (1991).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Applications to reflection filter fabrication,” App. Phy. Lett. 32, 647 (1978).
[Crossref]

Johnson, D.

F. Bilodeau, K. O. Hill, B. Malo, D. Johnson, and I. Skinner, “Efficient narrowband LP01>-<LP02 mode convertorsfabricated in photosensitive fiber: Spectral response,” Elect. Lett. 27, 682 (1991).
[Crossref]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Applications to reflection filter fabrication,” App. Phy. Lett. 32, 647 (1978).
[Crossref]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, J. E. Sipe, and T. E. Ergodan, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14, 58 (1996).
[Crossref]

J. B. Judkins, J. R. Pedrazzani, D. J. DiGiovanni, and A. M. Vengsarkar, “Temperature-insensitive long-period fiber gratings,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1996), postdeadline paper PD1.

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Applications to reflection filter fabrication,” App. Phy. Lett. 32, 647 (1978).
[Crossref]

Kersey, A. D.

A. D. Kersey and T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Phot. Tech. Lett. 4,1183 (1992).
[Crossref]

Krohn, D. A.

D. A. Krohn, Fiber Optic Sensors (Instrument Society of America, North Carolina, 1992).

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, J. E. Sipe, and T. E. Ergodan, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14, 58 (1996).
[Crossref]

Leonberger, F. J.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” in Conf. on Fiber Optic Sensors II, Proc. SPIE 798, 104 (1987).

Love, J. D.

G. Meltz, W. W. Morey, S. J. Hewlett, and J. D. Love, “Wavelength shifts in fiber Bragg gratings due to changes in the cladding properties,” in Topical Meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper PMB4, 225

Malo, B.

F. Bilodeau, K. O. Hill, B. Malo, D. Johnson, and I. Skinner, “Efficient narrowband LP01>-<LP02 mode convertorsfabricated in photosensitive fiber: Spectral response,” Elect. Lett. 27, 682 (1991).
[Crossref]

Meltz, G.

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by transverse holographic method,” Opt. Lett. 14, 823 (1989).
[Crossref] [PubMed]

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” in Conf. on Fiber Optic Sensors II, Proc. SPIE 798, 104 (1987).

G. Meltz, W. W. Morey, S. J. Hewlett, and J. D. Love, “Wavelength shifts in fiber Bragg gratings due to changes in the cladding properties,” in Topical Meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper PMB4, 225

Morey, W. W.

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by transverse holographic method,” Opt. Lett. 14, 823 (1989).
[Crossref] [PubMed]

G. Meltz, W. W. Morey, S. J. Hewlett, and J. D. Love, “Wavelength shifts in fiber Bragg gratings due to changes in the cladding properties,” in Topical Meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper PMB4, 225

Murphy, K. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
[Crossref]

V. Bhatia, D. Campbell, T. D’Alberto, G. Ten Eyck, D. Sherr, K. A. Murphy, and R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature-sensitivity for strain and refractive index sensing,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1997) paper FB1

Pedrazzani, J. R.

J. B. Judkins, J. R. Pedrazzani, D. J. DiGiovanni, and A. M. Vengsarkar, “Temperature-insensitive long-period fiber gratings,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1996), postdeadline paper PD1.

Reekie, L.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between temperature and strain effects using dual wavelength fiber grating sensors,” Elect. Lett. 30, 1085 (1994).
[Crossref]

Sherr, D.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
[Crossref]

V. Bhatia, D. Campbell, T. D’Alberto, G. Ten Eyck, D. Sherr, K. A. Murphy, and R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature-sensitivity for strain and refractive index sensing,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1997) paper FB1

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, J. E. Sipe, and T. E. Ergodan, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14, 58 (1996).
[Crossref]

Skinner, I.

F. Bilodeau, K. O. Hill, B. Malo, D. Johnson, and I. Skinner, “Efficient narrowband LP01>-<LP02 mode convertorsfabricated in photosensitive fiber: Spectral response,” Elect. Lett. 27, 682 (1991).
[Crossref]

Strasser, T. A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Temperature-sensitive long-period fiber gratings for wideband tunable filters,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1999) ThJ5.

Ten Eyck, G.

V. Bhatia, D. Campbell, T. D’Alberto, G. Ten Eyck, D. Sherr, K. A. Murphy, and R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature-sensitivity for strain and refractive index sensing,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1997) paper FB1

Ten Eyck, G. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
[Crossref]

Vengsarkar, A. M.

V. Bhatia, D. Campbell, R.O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648 (1997).
[Crossref] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692 (1996).
[Crossref] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, J. E. Sipe, and T. E. Ergodan, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14, 58 (1996).
[Crossref]

J. B. Judkins, J. R. Pedrazzani, D. J. DiGiovanni, and A. M. Vengsarkar, “Temperature-insensitive long-period fiber gratings,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1996), postdeadline paper PD1.

Windeler, R. S.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Temperature-sensitive long-period fiber gratings for wideband tunable filters,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1999) ThJ5.

Xu, M. G.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between temperature and strain effects using dual wavelength fiber grating sensors,” Elect. Lett. 30, 1085 (1994).
[Crossref]

Zabaronick, N. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
[Crossref]

App. Phy. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Applications to reflection filter fabrication,” App. Phy. Lett. 32, 647 (1978).
[Crossref]

Elect. Lett. (2)

F. Bilodeau, K. O. Hill, B. Malo, D. Johnson, and I. Skinner, “Efficient narrowband LP01>-<LP02 mode convertorsfabricated in photosensitive fiber: Spectral response,” Elect. Lett. 27, 682 (1991).
[Crossref]

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between temperature and strain effects using dual wavelength fiber grating sensors,” Elect. Lett. 30, 1085 (1994).
[Crossref]

IEEE Phot. Tech. Lett. (1)

A. D. Kersey and T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Phot. Tech. Lett. 4,1183 (1992).
[Crossref]

J. Lightwave Tech. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, J. E. Sipe, and T. E. Ergodan, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14, 58 (1996).
[Crossref]

Opt. Eng. (1)

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. Ten Eyck, K. A. Murphy, and R.O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872 (1997).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” in Conf. on Fiber Optic Sensors II, Proc. SPIE 798, 104 (1987).

Other (7)

J. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House, Boston, 1988).

D. A. Krohn, Fiber Optic Sensors (Instrument Society of America, North Carolina, 1992).

G. Meltz, W. W. Morey, S. J. Hewlett, and J. D. Love, “Wavelength shifts in fiber Bragg gratings due to changes in the cladding properties,” in Topical Meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), paper PMB4, 225

J. B. Judkins, J. R. Pedrazzani, D. J. DiGiovanni, and A. M. Vengsarkar, “Temperature-insensitive long-period fiber gratings,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1996), postdeadline paper PD1.

V. Bhatia, Properties and sensing applications of long-period gratings (Ph.D. Dissertation, Virginia Tech, Blacksburg, Virginia1996).

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Temperature-sensitive long-period fiber gratings for wideband tunable filters,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1999) ThJ5.

V. Bhatia, D. Campbell, T. D’Alberto, G. Ten Eyck, D. Sherr, K. A. Murphy, and R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature-sensitivity for strain and refractive index sensing,” in Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1997) paper FB1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Shift in a band of a long-period grating with temperature. The spectra correspond to temperatures of 22.7 °C, 49.1 °C, 74.0 °C, 100.9 °C, 127.3 °C and 149.7 °C from left to right [14]. The resonant wavelength shifts from 1607.8 nm at 22.7 °C to 1619.6 nm at 149.7 °C.

Fig. 2.
Fig. 2.

Shift in the peak loss wavelengths (with respect to that at 31.2 °C) with temperature for various resonance bands of a long-period grating [14]. The location of the bands A, B, C and D are 1608.6 nm, 1332.9 nm, 1219.7 nm and 1159.6 nm, respectively at 31.2 °C. The experimental data (symbols) are and approximated by linear curve fits. The dashed line (E) is the shift for a Bragg grating at 1550 nm with a temperature coefficient 1.3 nm/100 °C.

Fig. 3.
Fig. 3.

Shift in the peak loss wavelengths with strain for various resonance bands of a long-period grating [14]. The dashed line (E) is the shift for a Bragg grating with coefficient 11.55 nm/%ε.

Fig. 4.
Fig. 4.

Experimental shift in the four resonance bands of a long-period grating as a function of the index of the ambient medium [14]. The bands at 1496.6 nm (A), 1329.3 nm (B), 1243.8 nm (C) and 1192.1 nm (D) were used for the experiment. The shifts are measured with respect to the locations at n3=1.0. The indices of the oils are calculated at the corresponding resonant wavelengths of the bands.

Fig. 5.
Fig. 5.

Change in transmission through a grating for increasing (circles) and decreasing (squares) temperature [14]. The resonance band for the grating under test is centered at 1294 nm (50 °C) while the laser diode is located at 1312 nm. The transmission is normalized to 0 dB at 50 °C. Inset shows the grating spectra in steps of 50 °C.

Fig. 6.
Fig. 6.

Comparison between measured (symbols) and actual (lines) values of (a) temperature (b) strain using a long-period grating [14]. The average rate of temperature change was -1.08 °C/min.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ ( m ) = ( n eff n cl , m ) Λ
dT = d ( δ n eff ) ( d n eff dT d n cl dT ) + Λ d Λ 1 L dL dT
= d ( δ n eff ) ( d n eff d n cl ) + Λ d Λ
d n 3 = d n cl d n cl d n 3
A Δ T + B Δ ε = Δ λ 1
T + D Δ ε = Δ λ 2

Metrics