Abstract

Using two dimensional synthetic frequency-domain measurements, the inverse imaging problem is solved for absorption and fluorescence lifetime mapping with the truncated Newton’s optimization scheme developed in Part I of this contribution. Herein, we present reconstructed maps of absorption owing to a fluorophore from excitation and emission measurements which detail the presence of tissue heterogeneities characterized by tenfold increase in fluorescent contrast agent. Our results confirm that fluorescence provides superior mapping of heterogeneities over excitation measurements. Using emission measurements we then map fluorescent lifetime under conditions of tenfold uptake of contrast agent in tissue heterogeneities. The ability to map fluorescent quenching and lengthening of contrast agents facilitates the solution of the inverse problem and further improves the ability to reconstruct tissue heterogeneities.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Roy and E.M. Sevick-Muraca, "Truncated Newtons optimization scheme for absorption and fluorescence optical tomography: Part I- Theory and formulation," Opt. Express 4, 353-371 (1999); http://www.opticsexpress.org/oearchive/source/9268.htm.
    [CrossRef] [PubMed]
  2. T. L. Troy, D. L. Page and E. M. Sevick-Muraca, "Optical properties of normal and diseased breast tissues: prognosis for optical mammography," J. Biomedical Opt. 1, 342-355 (1996).
    [CrossRef]
  3. E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiolo. 66, 55-64 (1997).
    [CrossRef]
  4. R. Cubeddu, G. Canti, A. Pifferi, P. Taroni and G. Valentini, "Fluorescence lifetime imaging of experimental tumors in hematoporhyrin derivate-sensitized mice," Photochem. Photobiol. 66, 229-236 (1997).
    [CrossRef] [PubMed]
  5. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light re-emitted from tissues and other random media," Appl. Opt. 36, 2260-2272 (1997).
    [CrossRef] [PubMed]
  6. M. A. OLeary, D. A. Boas, B. Chance and A.G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
    [CrossRef]
  7. E. M. Sevick-Muraca, C. L. Hutchinson and D.Y. Paithankar, "Optical Tissue Biodiagnostics Using Fluorescence Lifetime," Opt. Photon. News 7, (1996) pp 25-28.
    [CrossRef]
  8. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998).
    [CrossRef]
  9. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz and E. M. Sevick-Muraca, "Three-dimensional optical tomography," Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg (eds.). Proc. Soc. Photo-Opt. Instrum. Eng., 3597: 000-000 (1999).
  10. M. Schweiger and S. R. Arridge, "Comparison of two- and three- dimensional reconstruction methods in optical tomography," Appl. Opt. 37, 7419-7428 (1998).
    [CrossRef]
  11. J. S. Reynolds, T. L. Troy and E. M. Sevick-Muraca, "Multi-pixel techniques for frequency-domain photon migration imaging," Biotech. Prog. 13, 669-680 (1997).
    [CrossRef]
  12. S., Troy, T. L., Thompson, A., Mayer, R., Thompson, A. B., Waters, D. J., Cornell, K.K., Snyder, P.W., and E. M. Sevick-Muraca, "Multi-pixel frequency-domain of spontaneous canine breast disease using fluorescent agents," Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg (eds.). Proc. Soc. Photo-Opt. Instrum. Eng., 3597: 000-000, 1999.

Other

R. Roy and E.M. Sevick-Muraca, "Truncated Newtons optimization scheme for absorption and fluorescence optical tomography: Part I- Theory and formulation," Opt. Express 4, 353-371 (1999); http://www.opticsexpress.org/oearchive/source/9268.htm.
[CrossRef] [PubMed]

T. L. Troy, D. L. Page and E. M. Sevick-Muraca, "Optical properties of normal and diseased breast tissues: prognosis for optical mammography," J. Biomedical Opt. 1, 342-355 (1996).
[CrossRef]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiolo. 66, 55-64 (1997).
[CrossRef]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni and G. Valentini, "Fluorescence lifetime imaging of experimental tumors in hematoporhyrin derivate-sensitized mice," Photochem. Photobiol. 66, 229-236 (1997).
[CrossRef] [PubMed]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light re-emitted from tissues and other random media," Appl. Opt. 36, 2260-2272 (1997).
[CrossRef] [PubMed]

M. A. OLeary, D. A. Boas, B. Chance and A.G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
[CrossRef]

E. M. Sevick-Muraca, C. L. Hutchinson and D.Y. Paithankar, "Optical Tissue Biodiagnostics Using Fluorescence Lifetime," Opt. Photon. News 7, (1996) pp 25-28.
[CrossRef]

H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998).
[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz and E. M. Sevick-Muraca, "Three-dimensional optical tomography," Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg (eds.). Proc. Soc. Photo-Opt. Instrum. Eng., 3597: 000-000 (1999).

M. Schweiger and S. R. Arridge, "Comparison of two- and three- dimensional reconstruction methods in optical tomography," Appl. Opt. 37, 7419-7428 (1998).
[CrossRef]

J. S. Reynolds, T. L. Troy and E. M. Sevick-Muraca, "Multi-pixel techniques for frequency-domain photon migration imaging," Biotech. Prog. 13, 669-680 (1997).
[CrossRef]

S., Troy, T. L., Thompson, A., Mayer, R., Thompson, A. B., Waters, D. J., Cornell, K.K., Snyder, P.W., and E. M. Sevick-Muraca, "Multi-pixel frequency-domain of spontaneous canine breast disease using fluorescent agents," Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg (eds.). Proc. Soc. Photo-Opt. Instrum. Eng., 3597: 000-000, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Figure 1
Figure 1

(a) Actual ‘true’ distribution of absorption, μaxf [target 1 top, target 2 right, target 3 bottom] (b) reconstructed μaxf from excitation measurement (c) Average value of μaxf as a function of iteration

Figure 2
Figure 2

(a) Reconstructed absorption, μ a xm , from fluorescence measurements and (b) Average value of μ a xm , as a function of iteration.

Figure 3
Figure 3

(a) “True’ distribution of fluorophore lifetime, possessing longer lifetime within three heterogeneities having ten-fold uptake of fluorescent dye; (b) Reconstructed lifetime at 50 MHz; (c) 100 MHz; (d) 150 MHz.

Figure 4
Figure 4

The distribution of fluorophore lifetime, possessing longer fluorescent lifetime within three heterogeneities having ten-fold uptake of fluorescent dye. Average value of heterogeneity lifetime as function of iteration; (b) at 50 MHz; (c) 100 MHz; (d) 150 MHz

Figure 5
Figure 5

(a) ‘True’ distribution of fluorophore lifetime, with fluorophore quenching within three heterogeneities having ten-fold uptake of fluorescent dye; (b) Reconstructed lifetime at 50 MHz; (c) 100MHz; (d) 150 MHz.

Figure 6
Figure 6

The distribution of fluorophore lifetime, quenching fluorescent lifetime within three hetergeneities having ten-fold uptake of fluorescent dye. Average value of heterogeneity lifetime as function of iteration; (b) at 50 MHz; (c) 100 MHz; (d) 150 MHz

Tables (1)

Tables Icon

Table 1. Parameters used in truncated Newton method optimization for absorption and lifetime imaging

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Φ x = Φ x ( 1.0 + Z * G ( 0,1 ) )
tan ( θ + 0.1 * G ( 0,1 ) ) = img ( Φ x 1 ) re ( Φ x 1 )
tan θ + tan ( 0.1 * G ) 1 tan θ tan ( 0.1 * G ) = img ( Φ x 1 ) re ( Φ x 1 )
img ( Φ x ) re ( Φ x ) + tan ( 0.1 * G ) 1 img ( Φ x ) re ( Φ x ) * tan ( 1.0 * G ) = img ( Φ x 1 ) re ( Φ x 1 )
img ( Φ x ) + re ( Φ x ) * tan ( 0.1 * G ) re ( Φ x ) img ( Φ x ) * tan ( 0.1 * G ) = img ( Φ x 1 ) re ( Φ x 1 )
img ( Φ x 1 ) = img ( Φ x ) re ( Φ x ) * tan ( 0.1 * G )
re ( Φ x 1 ) = re ( Φ x ) img ( Φ x ) * tan ( 0.1 * G )
Now our new fluence is : Φ x = ( re ( Φ x 1 ) , img ( Φ x 1 ) )

Metrics