Abstract

Eye-safe solid-state lasers that operate at 2 μm wavelength have many applications in medical, remote sensing and military technologies. With a 3-W CW laser-diode pumping, we obtained 760 mW 2.01 μm Tm:YAG laser under CW operation. The slope efficiency was 44% and the optical to optical efficiency reached 36%. In the acousto-optic Q-switched operation, laser pulses with the energy of 1.2mJ and 380 ns FWHM width have been achieved.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel and S. A. Payne, "115-W Tm:YAG diode-pumped solid-state laser," IEEE J. Quantum Electron. 33, 1592-1599 (1997).
    [CrossRef]
  2. J. Quarles, A. Rosenbaum, C. L. Marquardt and L. Esterowitz, "Flash-lamp pumped, efficient room temperature Cr, Tm:YAG laser operation at 2.01mm wavelength," Opt. Lett. 15, 42-44 (1990).
    [CrossRef] [PubMed]
  3. R. C. Stoeman and L. Esterowitz, "Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers," Opt. Lett. 15, 486-488 (1990).
    [CrossRef]
  4. T. J. Kane and T. S. Kubo, "Diode-pumped single-frequency lasers and Q-switched lasers using Tm:YAG and Tm:Ho:YAG," in OSA Proceedings on Advanced Solid-State Lasers, vol. 6, 136-139. H. P. Jenssen and G. Dube, eds. Washington, DC: Opt. Soc. Am., (1991).
  5. P. J. M. Suni and S. W. Henderson, "1-mJ/pulse Tm:YAG laser pumped by a 3-W diode laser," Opt. Lett. 16, 817-819 (1991).
    [CrossRef] [PubMed]
  6. T. S. Kubo and T. J. Kane, "Diode-pumped lasers at five eye-safe wavelengths," IEEE J. Quantum Electron.28, 1033-1040 (1992).
    [CrossRef]
  7. J. D. Kmetec, T. S. Kubo, T. J. Kane and C. J. Grund, "Laser performance of diode-pumped thulium-doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 crystals," Opt. Lett. 19, 186-188 (1994).
    [CrossRef] [PubMed]
  8. T. Y. Fan, G. Huber, R. L. Byer and P. Mitszcherlich, "Spectroscopy and diode-laser-pumped operation of Tm:Ho:YAG," IEEE J. Quantum Electron.24, 924-933 (1988).
    [CrossRef]
  9. T. Y. Fan, G. Huber, R. L. Byer and P. Mitszcherlich, "Continuous wave operation at 2.1mm of a diode laser pumped, Tm-sensitized Ho:YAG laser at 300K," Opt. Lett. 12, 678-680 (1987).
    [CrossRef] [PubMed]
  10. L. Esterowitz, "Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 mm operating at room temperature," Opt. Eng. 29, 676-680 (1990).
    [CrossRef]
  11. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya and A. V. Huffaker, "Eye-safe coherent laser radar system at 2.1 mm using Tm,Ho:YAG lasers," Opt. Lett. 16, 773-775 (1991).
    [CrossRef] [PubMed]
  12. Th. Rothacher, W. Luthy and H. P. Weber, "Spectral properties of a Tm:Ho:YAG laser in active mirror configuration," Appl. Phys. B. 66, 543-546 (1998).
    [CrossRef]
  13. J. J. Zayhowski, J. Harrison, C. Dill and J. Ochoa, "Tm:YVO4 microchip laser," Appl. Opt. 34, 435-437 (1995).
    [CrossRef] [PubMed]
  14. H. Saito, S. Chddha, R. S. F. Chang and N. Djeu, "Efficient 1.94 mm Tm 3+ laser in YVO4 host," Opt. Lett. 17, 189-191 (1992).
    [CrossRef] [PubMed]
  15. H. Hemmati, "2.07 mm cw diode-laser-pumped Tm:Ho:YLiF4 room temperature laser," Opt. Lett. 14, 435-437 (1989).
    [CrossRef] [PubMed]
  16. I. F. Elder and M. J. P. Payne, Lasing in diode-pumped thulium and thulium, holmium YAP," In OSA Proc. Advanced Solid State Lasers, S. A. Payne and C. R. pollock, Eds., 15, 319-325 (1996).
  17. G. J. Quarles, A. Rosenbaum, C. L. Marquardt and L. Esterowitz, "Efficient room temperature operation of flash-lamp pumped Cr-Tm:YAG lasers," Opt. Lett. 15, 42-44 (1990).
    [CrossRef] [PubMed]
  18. T. Y. Fan, "Optimizing the efficiency and stored energy in quasi-three-level lasers," IEEE J. Quantum Electron. 28, 2692-2697 (1992).
    [CrossRef]
  19. T. Y. Fan and R. L. Byer, "Modeling and cw operation of a quasi-three-level 946nm Nd:YAG laser," IEEE J. Quantum Electron.23, 605-612 (1987).
    [CrossRef]
  20. C. Li, Y. J. Huo, S. F. He and Y. H. Cao, "Theoretical investigation of longitudinally pumped Tm:YAG lasers," ACTA Optica Sinica 18, 1473--1478 (1998).
  21. W. P. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Amer. B 5, 1412-1424 (1988).
    [CrossRef]
  22. C. Li, Y. J. Huo, S. F. He and Y. H. Cao, "Temperature induced spectra broadening and fluorescence quenching in Tm:YAG crystals," ACTA Optica Sinica 18, 1698-1702 (1998).

Other

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel and S. A. Payne, "115-W Tm:YAG diode-pumped solid-state laser," IEEE J. Quantum Electron. 33, 1592-1599 (1997).
[CrossRef]

J. Quarles, A. Rosenbaum, C. L. Marquardt and L. Esterowitz, "Flash-lamp pumped, efficient room temperature Cr, Tm:YAG laser operation at 2.01mm wavelength," Opt. Lett. 15, 42-44 (1990).
[CrossRef] [PubMed]

R. C. Stoeman and L. Esterowitz, "Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers," Opt. Lett. 15, 486-488 (1990).
[CrossRef]

T. J. Kane and T. S. Kubo, "Diode-pumped single-frequency lasers and Q-switched lasers using Tm:YAG and Tm:Ho:YAG," in OSA Proceedings on Advanced Solid-State Lasers, vol. 6, 136-139. H. P. Jenssen and G. Dube, eds. Washington, DC: Opt. Soc. Am., (1991).

P. J. M. Suni and S. W. Henderson, "1-mJ/pulse Tm:YAG laser pumped by a 3-W diode laser," Opt. Lett. 16, 817-819 (1991).
[CrossRef] [PubMed]

T. S. Kubo and T. J. Kane, "Diode-pumped lasers at five eye-safe wavelengths," IEEE J. Quantum Electron.28, 1033-1040 (1992).
[CrossRef]

J. D. Kmetec, T. S. Kubo, T. J. Kane and C. J. Grund, "Laser performance of diode-pumped thulium-doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 crystals," Opt. Lett. 19, 186-188 (1994).
[CrossRef] [PubMed]

T. Y. Fan, G. Huber, R. L. Byer and P. Mitszcherlich, "Spectroscopy and diode-laser-pumped operation of Tm:Ho:YAG," IEEE J. Quantum Electron.24, 924-933 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer and P. Mitszcherlich, "Continuous wave operation at 2.1mm of a diode laser pumped, Tm-sensitized Ho:YAG laser at 300K," Opt. Lett. 12, 678-680 (1987).
[CrossRef] [PubMed]

L. Esterowitz, "Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 mm operating at room temperature," Opt. Eng. 29, 676-680 (1990).
[CrossRef]

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya and A. V. Huffaker, "Eye-safe coherent laser radar system at 2.1 mm using Tm,Ho:YAG lasers," Opt. Lett. 16, 773-775 (1991).
[CrossRef] [PubMed]

Th. Rothacher, W. Luthy and H. P. Weber, "Spectral properties of a Tm:Ho:YAG laser in active mirror configuration," Appl. Phys. B. 66, 543-546 (1998).
[CrossRef]

J. J. Zayhowski, J. Harrison, C. Dill and J. Ochoa, "Tm:YVO4 microchip laser," Appl. Opt. 34, 435-437 (1995).
[CrossRef] [PubMed]

H. Saito, S. Chddha, R. S. F. Chang and N. Djeu, "Efficient 1.94 mm Tm 3+ laser in YVO4 host," Opt. Lett. 17, 189-191 (1992).
[CrossRef] [PubMed]

H. Hemmati, "2.07 mm cw diode-laser-pumped Tm:Ho:YLiF4 room temperature laser," Opt. Lett. 14, 435-437 (1989).
[CrossRef] [PubMed]

I. F. Elder and M. J. P. Payne, Lasing in diode-pumped thulium and thulium, holmium YAP," In OSA Proc. Advanced Solid State Lasers, S. A. Payne and C. R. pollock, Eds., 15, 319-325 (1996).

G. J. Quarles, A. Rosenbaum, C. L. Marquardt and L. Esterowitz, "Efficient room temperature operation of flash-lamp pumped Cr-Tm:YAG lasers," Opt. Lett. 15, 42-44 (1990).
[CrossRef] [PubMed]

T. Y. Fan, "Optimizing the efficiency and stored energy in quasi-three-level lasers," IEEE J. Quantum Electron. 28, 2692-2697 (1992).
[CrossRef]

T. Y. Fan and R. L. Byer, "Modeling and cw operation of a quasi-three-level 946nm Nd:YAG laser," IEEE J. Quantum Electron.23, 605-612 (1987).
[CrossRef]

C. Li, Y. J. Huo, S. F. He and Y. H. Cao, "Theoretical investigation of longitudinally pumped Tm:YAG lasers," ACTA Optica Sinica 18, 1473--1478 (1998).

W. P. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Amer. B 5, 1412-1424 (1988).
[CrossRef]

C. Li, Y. J. Huo, S. F. He and Y. H. Cao, "Temperature induced spectra broadening and fluorescence quenching in Tm:YAG crystals," ACTA Optica Sinica 18, 1698-1702 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The experimental setup of diode-pumped Tm:YAG laser.

Fig. 2.
Fig. 2.

The output properties of the diode-pumped Tm:YAG lasers under different temperatures.

Fig. 3.
Fig. 3.

The temperature dependence of the threshold power and the slope efficiency of the diode-pumped Tm:YAG lasers.

Fig. 4.
Fig. 4.

The relationship between the Q-switched laser energy and the repetition-rate of the Tm:YAG lasers.

Fig. 5.
Fig. 5.

Energy-level diagram of Tm:YAG lasers. The 2 μm laser is generated from the transition of the lower Stark level of 3F4 to the higher Stark level of 3H6. The cross-relaxation between 3H4-3F4 and 3H6-3F4 can produce two laser photons with one pump photon.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P p , th = πh v p ( ω l 2 + ω p 2 ) ( L + T + 2 N a 0 σl ) 4 στf η a η q .
η = T T + L v l v p η a η q dS dF .
dS dF = 1 + B fS 1 n ( 1 + fS ) f 2 F 2 0 [ exp ( x ) B a 2 fS ] exp ( 2 a 2 x ) [ 1 + fS exp ( a 2 x ) ] 2 .
a = ω p ω l .
x = 2 r 2 ω l .
B = 2 N a 0 σl T + L .
F = 4 P p τσ η a η q πh v p ω l 2 ( L + T ) .
S = 2 cστ Φ n π ω l 2 l .

Metrics