Abstract

We report designs and experimental demonstrations of a widely tunable single-mode quantum cascade laser array based on slot waveguide structures in the mid-infrared region. The laser array device realized a continuous tuning range of 71 cm-1 from 9.66 μm to 10.37 μm at 300 K only using the current tuning without any external heatsink temperature adjustments, in good agreement with the design. Stable single-mode operations free of undesired mode-hops have been obtained over the whole tuning range. Another slot waveguide QCL array with a 41 cm-1 continuous tuning range around 7.3 μm has also been realized with the same design principle, demonstrating the universal applicability of the array design. The broadly continuous tuning with simple processing makes the array device a suitable candidate for mid-infrared sensing and spectroscopy application.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
1.3 μm wavelength tunable single-mode laser arrays based on slots

Michael McDermott, Robert McKenna, Caolán Murphy, Dovydas Mickus, Hai-Zhong Weng, Sepideh Naimi, Qiaoyin Lu, Wei-Hua Guo, Michael Wallace, Nicolás Abadía, and John F. Donegan
Opt. Express 29(10) 15802-15812 (2021)

Nine-channel wavelength tunable single mode laser array based on slots

Wei-Hua Guo, Qiaoyin Lu, Marta Nawrocka, Azat Abdullaev, James O’Callaghan, and John F. Donegan
Opt. Express 21(8) 10215-10221 (2013)

Improved performance of tunable single-mode laser array based on high-order slotted surface grating

Azat Abdullaev, Qiaoyin Lu, Weihua Guo, Michael J. Wallace, Marta Nawrocka, Frank Bello, Aaron Benson, James O’Callaghan, and John F. Donegan
Opt. Express 23(9) 12072-12078 (2015)

References

  • View by:

  1. P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
    [Crossref]
  2. L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, and V. Zeninar, “Multi-gas sensing with quantum cascade laser array in the mid-infrared region,” Appl. Phys. B 123(5), 145 (2017).
    [Crossref]
  3. G. P. Luo, C. Peng, H. Q. Le, and S. S. Pei, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
    [Crossref]
  4. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
    [Crossref]
  5. B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
    [Crossref]
  6. B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
    [Crossref]
  7. E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
    [Crossref]
  8. Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
    [Crossref]
  9. M. Razeghi, W. J. Zhou, R. McClintock, D. H. Wu, and S. Slivken, “Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 57(01), 1 (2018).
    [Crossref]
  10. W. Zhou, D. H. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4(10), 1228 (2017).
    [Crossref]
  11. B. Meng, J. Tao, X. H. Li, Y. Q. Zeng, S. Wu, and Q. J. Wang, “Tunable single-mode slot waveguide quantum cascade lasers,” Appl. Phys. Lett. 104(20), 201106 (2014).
    [Crossref]
  12. F. Smyth, E. Connolly, B. Roycroft, B. Corbett, P. Lambkin, and L. P. Barry, “Fast wavelength switching lasers using two-section slotted Fabry–Perot structures,” IEEE Photonics Technol. Lett. 18(20), 2105–2107 (2006).
    [Crossref]
  13. R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
    [Crossref]
  14. D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
    [Crossref]
  15. M. Nawrocka, Q. Y. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22(16), 18949 (2014).
    [Crossref]
  16. M. J. Wallace, G. Jain, R. Mckenna, F. Bello, and J. F. Donegan, “Tuning behaviour of slotted vernier widely tunable lasers,” Opt. Express 27(12), 17122 (2019).
    [Crossref]
  17. B. Meng, Y. Q. Zeng, G. Z. Liang, J. Tao, X. N. Hu, E. Rodriguez, and Q. J. Wang, “Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design,” Appl. Phys. Lett. 107(11), 111110 (2015).
    [Crossref]
  18. R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
    [Crossref]
  19. W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215 (2013).
    [Crossref]
  20. Q. Y. Lu, W. H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
    [Crossref]
  21. M. J. Wallace, S. T. Naimi, G. Jain, R. McKenna, F. Bello, and J. F. Donegan, “Genetic algorithm optimization of high order surface etched grating tunable laser array,” Opt. Express 28(6), 8169 (2020).
    [Crossref]
  22. M. McDermott, R. McKenna, C. Murphy, D. Mickus, H. Z. Weng, S. Naimi, Q. Y. Lu, W. H. Guo, M. Wallace, N. Abadía, and J. F. Donegan, “1.3 µm wavelength tunable single-mode laser arrays based on slots,” Opt. Express 29(10), 15802 (2021).
    [Crossref]
  23. D. H. Wu and M. Razeghi, “High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation,” APL Materials 5(3), 035505 (2017).
    [Crossref]
  24. P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
    [Crossref]

2021 (1)

2020 (1)

2019 (1)

2018 (1)

M. Razeghi, W. J. Zhou, R. McClintock, D. H. Wu, and S. Slivken, “Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 57(01), 1 (2018).
[Crossref]

2017 (3)

W. Zhou, D. H. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4(10), 1228 (2017).
[Crossref]

L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, and V. Zeninar, “Multi-gas sensing with quantum cascade laser array in the mid-infrared region,” Appl. Phys. B 123(5), 145 (2017).
[Crossref]

D. H. Wu and M. Razeghi, “High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation,” APL Materials 5(3), 035505 (2017).
[Crossref]

2015 (2)

B. Meng, Y. Q. Zeng, G. Z. Liang, J. Tao, X. N. Hu, E. Rodriguez, and Q. J. Wang, “Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design,” Appl. Phys. Lett. 107(11), 111110 (2015).
[Crossref]

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

2014 (2)

M. Nawrocka, Q. Y. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22(16), 18949 (2014).
[Crossref]

B. Meng, J. Tao, X. H. Li, Y. Q. Zeng, S. Wu, and Q. J. Wang, “Tunable single-mode slot waveguide quantum cascade lasers,” Appl. Phys. Lett. 104(20), 201106 (2014).
[Crossref]

2013 (1)

2012 (1)

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[Crossref]

2011 (1)

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

2010 (2)

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Q. Y. Lu, W. H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

2009 (4)

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

2008 (1)

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

2006 (1)

F. Smyth, E. Connolly, B. Roycroft, B. Corbett, P. Lambkin, and L. P. Barry, “Fast wavelength switching lasers using two-section slotted Fabry–Perot structures,” IEEE Photonics Technol. Lett. 18(20), 2105–2107 (2006).
[Crossref]

2004 (1)

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

2001 (1)

G. P. Luo, C. Peng, H. Q. Le, and S. S. Pei, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[Crossref]

Abadía, N.

Abdullaev, A.

Audet, R. M.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Barry, L. P.

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

F. Smyth, E. Connolly, B. Roycroft, B. Corbett, P. Lambkin, and L. P. Barry, “Fast wavelength switching lasers using two-section slotted Fabry–Perot structures,” IEEE Photonics Technol. Lett. 18(20), 2105–2107 (2006).
[Crossref]

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

Belkin, M.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Bello, F.

Bidaux, Y.

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Bismuto, A.

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Bizet, L.

L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, and V. Zeninar, “Multi-gas sensing with quantum cascade laser array in the mid-infrared region,” Appl. Phys. B 123(5), 145 (2017).
[Crossref]

Blaser, S.

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Bour, D.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Brun, M.

L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, and V. Zeninar, “Multi-gas sensing with quantum cascade laser array in the mid-infrared region,” Appl. Phys. B 123(5), 145 (2017).
[Crossref]

Byrne, D.

Q. Y. Lu, W. H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Byrne, D. C.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Callaghan, J. O.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Capasso, F.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[Crossref]

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Carras, M.

L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, and V. Zeninar, “Multi-gas sensing with quantum cascade laser array in the mid-infrared region,” Appl. Phys. B 123(5), 145 (2017).
[Crossref]

Cathcart, T.

Chen, J.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Connolly, E.

F. Smyth, E. Connolly, B. Roycroft, B. Corbett, P. Lambkin, and L. P. Barry, “Fast wavelength switching lasers using two-section slotted Fabry–Perot structures,” IEEE Photonics Technol. Lett. 18(20), 2105–2107 (2006).
[Crossref]

Corbett, B.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

F. Smyth, E. Connolly, B. Roycroft, B. Corbett, P. Lambkin, and L. P. Barry, “Fast wavelength switching lasers using two-section slotted Fabry–Perot structures,” IEEE Photonics Technol. Lett. 18(20), 2105–2107 (2006).
[Crossref]

Corzine, S.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Diehl, L.

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Donegan, J. F.

M. McDermott, R. McKenna, C. Murphy, D. Mickus, H. Z. Weng, S. Naimi, Q. Y. Lu, W. H. Guo, M. Wallace, N. Abadía, and J. F. Donegan, “1.3 µm wavelength tunable single-mode laser arrays based on slots,” Opt. Express 29(10), 15802 (2021).
[Crossref]

M. J. Wallace, S. T. Naimi, G. Jain, R. McKenna, F. Bello, and J. F. Donegan, “Genetic algorithm optimization of high order surface etched grating tunable laser array,” Opt. Express 28(6), 8169 (2020).
[Crossref]

M. J. Wallace, G. Jain, R. Mckenna, F. Bello, and J. F. Donegan, “Tuning behaviour of slotted vernier widely tunable lasers,” Opt. Express 27(12), 17122 (2019).
[Crossref]

M. Nawrocka, Q. Y. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22(16), 18949 (2014).
[Crossref]

W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215 (2013).
[Crossref]

Q. Y. Lu, W. H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Engelstaedter, J. P.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Faist, J.

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

Fischer, M.

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Forchel, A.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Fuchs, P.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

Gmachl, C.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Gökden, B.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[Crossref]

Gorman, J. O.

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Goyal, A. K.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[Crossref]

Gresch, T.

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Guo, W. H.

M. McDermott, R. McKenna, C. Murphy, D. Mickus, H. Z. Weng, S. Naimi, Q. Y. Lu, W. H. Guo, M. Wallace, N. Abadía, and J. F. Donegan, “1.3 µm wavelength tunable single-mode laser arrays based on slots,” Opt. Express 29(10), 15802 (2021).
[Crossref]

M. Nawrocka, Q. Y. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22(16), 18949 (2014).
[Crossref]

W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215 (2013).
[Crossref]

Q. Y. Lu, W. H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Hofler, G.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Höfling, S.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Hu, X. N.

B. Meng, Y. Q. Zeng, G. Z. Liang, J. Tao, X. N. Hu, E. Rodriguez, and Q. J. Wang, “Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design,” Appl. Phys. Lett. 107(11), 111110 (2015).
[Crossref]

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Jain, G.

Kelly, B.

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Koeth, J.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Lambkin, P.

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

F. Smyth, E. Connolly, B. Roycroft, B. Corbett, P. Lambkin, and L. P. Barry, “Fast wavelength switching lasers using two-section slotted Fabry–Perot structures,” IEEE Photonics Technol. Lett. 18(20), 2105–2107 (2006).
[Crossref]

Le, H. Q.

G. P. Luo, C. Peng, H. Q. Le, and S. S. Pei, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[Crossref]

Lee, B. G.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Li, X. H.

B. Meng, J. Tao, X. H. Li, Y. Q. Zeng, S. Wu, and Q. J. Wang, “Tunable single-mode slot waveguide quantum cascade lasers,” Appl. Phys. Lett. 104(20), 201106 (2014).
[Crossref]

Liang, G. Z.

B. Meng, Y. Q. Zeng, G. Z. Liang, J. Tao, X. N. Hu, E. Rodriguez, and Q. J. Wang, “Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design,” Appl. Phys. Lett. 107(11), 111110 (2015).
[Crossref]

Lu, Q. Y.

M. McDermott, R. McKenna, C. Murphy, D. Mickus, H. Z. Weng, S. Naimi, Q. Y. Lu, W. H. Guo, M. Wallace, N. Abadía, and J. F. Donegan, “1.3 µm wavelength tunable single-mode laser arrays based on slots,” Opt. Express 29(10), 15802 (2021).
[Crossref]

M. Nawrocka, Q. Y. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22(16), 18949 (2014).
[Crossref]

W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215 (2013).
[Crossref]

Q. Y. Lu, W. H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Luo, G. P.

G. P. Luo, C. Peng, H. Q. Le, and S. S. Pei, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[Crossref]

MacArthur, J.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Maisons, G.

L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, and V. Zeninar, “Multi-gas sensing with quantum cascade laser array in the mid-infrared region,” Appl. Phys. B 123(5), 145 (2017).
[Crossref]

Maulini, R.

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

McClintock, R.

M. Razeghi, W. J. Zhou, R. McClintock, D. H. Wu, and S. Slivken, “Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 57(01), 1 (2018).
[Crossref]

W. Zhou, D. H. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4(10), 1228 (2017).
[Crossref]

McDermott, M.

McKenna, R.

Meng, B.

B. Meng, Y. Q. Zeng, G. Z. Liang, J. Tao, X. N. Hu, E. Rodriguez, and Q. J. Wang, “Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design,” Appl. Phys. Lett. 107(11), 111110 (2015).
[Crossref]

B. Meng, J. Tao, X. H. Li, Y. Q. Zeng, S. Wu, and Q. J. Wang, “Tunable single-mode slot waveguide quantum cascade lasers,” Appl. Phys. Lett. 104(20), 201106 (2014).
[Crossref]

Menzel, S.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[Crossref]

Mickus, D.

Mujagic, E.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Muller, A.

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Murphy, C.

Naimi, S.

Naimi, S. T.

Nawrocka, M.

O’Callaghan, J.

Parvitte, B.

L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, and V. Zeninar, “Multi-gas sensing with quantum cascade laser array in the mid-infrared region,” Appl. Phys. B 123(5), 145 (2017).
[Crossref]

Pei, S. S.

G. P. Luo, C. Peng, H. Q. Le, and S. S. Pei, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[Crossref]

Peng, C.

G. P. Luo, C. Peng, H. Q. Le, and S. S. Pei, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[Crossref]

Peters, F. H.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Pflugl, C.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Phelan, R.

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Rauter, P.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[Crossref]

Razeghi, M.

M. Razeghi, W. J. Zhou, R. McClintock, D. H. Wu, and S. Slivken, “Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 57(01), 1 (2018).
[Crossref]

W. Zhou, D. H. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4(10), 1228 (2017).
[Crossref]

D. H. Wu and M. Razeghi, “High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation,” APL Materials 5(3), 035505 (2017).
[Crossref]

Rodriguez, E.

B. Meng, Y. Q. Zeng, G. Z. Liang, J. Tao, X. N. Hu, E. Rodriguez, and Q. J. Wang, “Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design,” Appl. Phys. Lett. 107(11), 111110 (2015).
[Crossref]

Roycroft, B.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

F. Smyth, E. Connolly, B. Roycroft, B. Corbett, P. Lambkin, and L. P. Barry, “Fast wavelength switching lasers using two-section slotted Fabry–Perot structures,” IEEE Photonics Technol. Lett. 18(20), 2105–2107 (2006).
[Crossref]

Sanchez, A.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[Crossref]

Schwarzer, C.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Semmel, J.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Seufert, J.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Slivken, S.

M. Razeghi, W. J. Zhou, R. McClintock, D. H. Wu, and S. Slivken, “Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 57(01), 1 (2018).
[Crossref]

W. Zhou, D. H. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4(10), 1228 (2017).
[Crossref]

Smyth, F.

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

F. Smyth, E. Connolly, B. Roycroft, B. Corbett, P. Lambkin, and L. P. Barry, “Fast wavelength switching lasers using two-section slotted Fabry–Perot structures,” IEEE Photonics Technol. Lett. 18(20), 2105–2107 (2006).
[Crossref]

Strasser, G.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Tao, J.

B. Meng, Y. Q. Zeng, G. Z. Liang, J. Tao, X. N. Hu, E. Rodriguez, and Q. J. Wang, “Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design,” Appl. Phys. Lett. 107(11), 111110 (2015).
[Crossref]

B. Meng, J. Tao, X. H. Li, Y. Q. Zeng, S. Wu, and Q. J. Wang, “Tunable single-mode slot waveguide quantum cascade lasers,” Appl. Phys. Lett. 104(20), 201106 (2014).
[Crossref]

Tardy, C.

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Terazzi, R.

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Turner, G. W.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[Crossref]

Vallon, R.

L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, and V. Zeninar, “Multi-gas sensing with quantum cascade laser array in the mid-infrared region,” Appl. Phys. B 123(5), 145 (2017).
[Crossref]

Wallace, M.

Wallace, M. J.

Wang, C. A.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[Crossref]

Wang, Q. J.

B. Meng, Y. Q. Zeng, G. Z. Liang, J. Tao, X. N. Hu, E. Rodriguez, and Q. J. Wang, “Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design,” Appl. Phys. Lett. 107(11), 111110 (2015).
[Crossref]

B. Meng, J. Tao, X. H. Li, Y. Q. Zeng, S. Wu, and Q. J. Wang, “Tunable single-mode slot waveguide quantum cascade lasers,” Appl. Phys. Lett. 104(20), 201106 (2014).
[Crossref]

Weng, H. Z.

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Worschech, L.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Wu, D. H.

M. Razeghi, W. J. Zhou, R. McClintock, D. H. Wu, and S. Slivken, “Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 57(01), 1 (2018).
[Crossref]

W. Zhou, D. H. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4(10), 1228 (2017).
[Crossref]

D. H. Wu and M. Razeghi, “High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation,” APL Materials 5(3), 035505 (2017).
[Crossref]

Wu, S.

B. Meng, J. Tao, X. H. Li, Y. Q. Zeng, S. Wu, and Q. J. Wang, “Tunable single-mode slot waveguide quantum cascade lasers,” Appl. Phys. Lett. 104(20), 201106 (2014).
[Crossref]

Yao, Y.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Zeng, Y. Q.

B. Meng, Y. Q. Zeng, G. Z. Liang, J. Tao, X. N. Hu, E. Rodriguez, and Q. J. Wang, “Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design,” Appl. Phys. Lett. 107(11), 111110 (2015).
[Crossref]

B. Meng, J. Tao, X. H. Li, Y. Q. Zeng, S. Wu, and Q. J. Wang, “Tunable single-mode slot waveguide quantum cascade lasers,” Appl. Phys. Lett. 104(20), 201106 (2014).
[Crossref]

Zeninar, V.

L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, and V. Zeninar, “Multi-gas sensing with quantum cascade laser array in the mid-infrared region,” Appl. Phys. B 123(5), 145 (2017).
[Crossref]

Zhang, H. A.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Zhou, W.

Zhou, W. J.

M. Razeghi, W. J. Zhou, R. McClintock, D. H. Wu, and S. Slivken, “Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 57(01), 1 (2018).
[Crossref]

APL Materials (1)

D. H. Wu and M. Razeghi, “High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation,” APL Materials 5(3), 035505 (2017).
[Crossref]

Appl. Phys. B (1)

L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, and V. Zeninar, “Multi-gas sensing with quantum cascade laser array in the mid-infrared region,” Appl. Phys. B 123(5), 145 (2017).
[Crossref]

Appl. Phys. Lett. (9)

G. P. Luo, C. Peng, H. Q. Le, and S. S. Pei, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[Crossref]

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

B. Meng, J. Tao, X. H. Li, Y. Q. Zeng, S. Wu, and Q. J. Wang, “Tunable single-mode slot waveguide quantum cascade lasers,” Appl. Phys. Lett. 104(20), 201106 (2014).
[Crossref]

B. Meng, Y. Q. Zeng, G. Z. Liang, J. Tao, X. N. Hu, E. Rodriguez, and Q. J. Wang, “Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design,” Appl. Phys. Lett. 107(11), 111110 (2015).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett. 101(26), 261117 (2012).
[Crossref]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Phelan, W. H. Guo, Q. Y. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O. Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O. Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

F. Smyth, E. Connolly, B. Roycroft, B. Corbett, P. Lambkin, and L. P. Barry, “Fast wavelength switching lasers using two-section slotted Fabry–Perot structures,” IEEE Photonics Technol. Lett. 18(20), 2105–2107 (2006).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 μ m,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Q. Y. Lu, W. H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

Opt. Eng. (1)

M. Razeghi, W. J. Zhou, R. McClintock, D. H. Wu, and S. Slivken, “Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 57(01), 1 (2018).
[Crossref]

Opt. Express (5)

Optica (1)

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) 3D schematic structure of a slot waveguide QCL array. (b) Microscopy image of the isolated region between two sections. The slot period of front (back) section is labelled as Lf (Lb). The spacing between the elements of array is 300 μm. The inset magnifies the image of one slot with a width of W=5 μm. (c) Microscopy image of the isolated facet section. The distance from facet to the last slot of each section is designed equal to the double of the slot period.
Fig. 2.
Fig. 2. (a) Field reflection and transmission coefficients of a single slot versus the slot depths. (b) Simulated loss difference between the dominant and side modes versus the slot number with various slot depths. The degradation of loss difference at 3.0 μm slot depth with the increase of the slot number arises from the large scattering loss induced by the deep slots. (c) Simulated linewidth of the reflection peak versus the slot number with various slot depths.
Fig. 3.
Fig. 3. Illustration of the tunability for QCL 1 by simulation. (a), (b) and (c) represent three conditions with different refractive indexes of the two sections induced by the two independent DC currents. Top: the power reflection spectra produced by front and back sections. Bottom: the corresponding total power reflection spectra showing the selected wavenumbers.
Fig. 4.
Fig. 4. (a) Simulated reflection spectra of supermodes from all the emitters of the slot waveguide QCL array. For each laser, the refractive index of the front section is assumed as 3.46 and three supermodes are shown with various refractive indexes of the back section. The spacing between the supermodes from different emitters is designed ∼2.4 cm-1. (b) Emission spectra of supermodes from all the emitters of the slot waveguide QCL array. For each laser, the front section was pumped by only pulse current and three supermodes working at different back section DC currents are shown, which is in good agreement with the simulated result above. The inset shows a typical single lobed 2D far-field pattern (left) and 1D far-field profile in-chip-plane (right) of our lasers. Nine of the elements except for QCL 2 exhibit a TM00 mode with an in-plane far-field FWHM of ∼26° as QCL 1 (blue curve). QCL 2 (orange curve) exhibits an in-plane far-field profile slightly contributed by higher-order lateral modes but still maintains a FWHM of ∼26°.
Fig. 5.
Fig. 5. (a) Simulated reflection spectra that illustrates a continuous tuning around a supermode of QCL 1 with variable refractive indexes of both sections. Different colors represent modes with different refractive indexes. (b) Emission spectra that illustrates a continuous tuning around a supermode of QCL 1 with two independent DC currents applied on both sections. Different colors represent modes with different currents. The average linewidth of the single-mode lasing peak is around 0.3 cm-1.
Fig. 6.
Fig. 6. Peak power and voltage versus current density curve for ten emitters of the slot array and the FP cavity laser with 2.5 mm length. The slot QCLs are pumped by only pulsed current (100 ns/10 kHz) into the front section without DC currents injected.
Fig. 7.
Fig. 7. (a) Single-mode tuning spectra of the 10-element slot waveguide QCL array showing a continuous tuning over 71 cm-1 around 10 μm. (b) The SMSRs of the modes within the continuous tuning range versus the wavenumber, most of which are >=15 dB. (c) The output peak powers of the modes within the continuous tuning range versus the wavenumber. Some of the modes show higher output powers compared to the maximum ones in Fig. 5 because the DC currents injected to back section provide more gain.
Fig. 8.
Fig. 8. Experimental demonstration of single-mode tuning spectra of the 5-elemenmt slot waveguide QCL array showing a continuous tuning over 41 cm-1 around 7.3 μm.

Tables (1)

Tables Icon

Table 1. Design parameters of each emitter

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ M N = 2 n f e f f L f M = 2 n b e f f L b N .