Abstract

We have used a newly developed Yb-doped high-power fiber source in an optical coherence tomography (OCT) apparatus. We have analyzed various properties of interest for OCT measurements such as spectral shape, related gate width, central wavelength, bandwidth, and power output.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. W. Colston Jr., M. J. Everett, L. B. Da Silva, "Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography," Appl. Opt. 37, 3582-3585 (1998).
    [CrossRef]
  2. S. N. Roper, M. D. Moores, G. V. Gelikonov, F. I. Feldchtein, N. M. Beach, M. A. King, V. M. Gelikonov, A. M. Sergeev, D. H. Reitze, "In vivo detection of experimentally induced cortical dysgenesis in the adult rat neocortex using optical coherence tomography," Jr. Neur. Meth. 80, 91-98 (1998).
    [CrossRef]
  3. M. Bashkansky, M. D. Duncan, M. Kahn, D. Lewis, III, J. Reintjes, "Subsurface defect detection in ceramics using optical gated techniques," Opt. Lett. 22, 61-63 (1997).
    [CrossRef] [PubMed]
  4. M. D. Duncan, M. Bashkansky, J. Reintjes, "Subsurface defect detection in materials using optical coherence tomography," Opt. Exp. 2, (1998), http://epubs.osa.org/oearchive/source/4710.htm.
  5. R. C. Youngquist, S. Carr, D. E. N. Davies, "Optical coherence-domain reflectometry: a new optical evaluation technique," Opt. Lett. 12, 158-160 (1987).
    [CrossRef] [PubMed]
  6. K. Takada, I. Yokohama, K. Chida, J. Noda, "New measurement system for fault location in optical waveguide devices based on an interferometric technique," Appl. Opt. 26, 1603-1606 (1987).
    [CrossRef] [PubMed]
  7. A. F. Fercher, K. Mengedoht, W. Werner, "Eye-length measurement by interferometry with partially coherent light," Opt. Lett. 13, 186-188 (1988).
    [CrossRef] [PubMed]
  8. R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, "Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices," Opt. Exp. 2, (1998), http://epubs.osa.org/oearchive/source/4055.htm.
  9. Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, G. H. Sigel, Jr., "Pr 3+ -doped fluoride fiber amplifier operating at 1.31 mm," Opt. Lett. 16, 1747-1749 (1991).
    [CrossRef] [PubMed]
  10. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, C. R. Davidson, "Long-period fiber-grating-based gain equalizers," Opt. Lett. 21, 336-338 (1996).
    [CrossRef] [PubMed]
  11. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, J. G. Fujimoto, "Optical coherence tomographic imaging of human tissue at 1.55 mm and 1.81 mm using Er- and Tm-doped fiber sources," J. Biom. Opt. 3, 76-79 (1998).
    [CrossRef]
  12. L. Goldberg, J. P. Koplow, R. P. Moeller, "High-power superfluorescent source with a side-pumped Yb-doped double-cladding fiber," Opt. Lett. 23, 1037-1039 (1998).
    [CrossRef]

Other (12)

B. W. Colston Jr., M. J. Everett, L. B. Da Silva, "Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography," Appl. Opt. 37, 3582-3585 (1998).
[CrossRef]

S. N. Roper, M. D. Moores, G. V. Gelikonov, F. I. Feldchtein, N. M. Beach, M. A. King, V. M. Gelikonov, A. M. Sergeev, D. H. Reitze, "In vivo detection of experimentally induced cortical dysgenesis in the adult rat neocortex using optical coherence tomography," Jr. Neur. Meth. 80, 91-98 (1998).
[CrossRef]

M. Bashkansky, M. D. Duncan, M. Kahn, D. Lewis, III, J. Reintjes, "Subsurface defect detection in ceramics using optical gated techniques," Opt. Lett. 22, 61-63 (1997).
[CrossRef] [PubMed]

M. D. Duncan, M. Bashkansky, J. Reintjes, "Subsurface defect detection in materials using optical coherence tomography," Opt. Exp. 2, (1998), http://epubs.osa.org/oearchive/source/4710.htm.

R. C. Youngquist, S. Carr, D. E. N. Davies, "Optical coherence-domain reflectometry: a new optical evaluation technique," Opt. Lett. 12, 158-160 (1987).
[CrossRef] [PubMed]

K. Takada, I. Yokohama, K. Chida, J. Noda, "New measurement system for fault location in optical waveguide devices based on an interferometric technique," Appl. Opt. 26, 1603-1606 (1987).
[CrossRef] [PubMed]

A. F. Fercher, K. Mengedoht, W. Werner, "Eye-length measurement by interferometry with partially coherent light," Opt. Lett. 13, 186-188 (1988).
[CrossRef] [PubMed]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, "Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices," Opt. Exp. 2, (1998), http://epubs.osa.org/oearchive/source/4055.htm.

Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, G. H. Sigel, Jr., "Pr 3+ -doped fluoride fiber amplifier operating at 1.31 mm," Opt. Lett. 16, 1747-1749 (1991).
[CrossRef] [PubMed]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, C. R. Davidson, "Long-period fiber-grating-based gain equalizers," Opt. Lett. 21, 336-338 (1996).
[CrossRef] [PubMed]

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, J. G. Fujimoto, "Optical coherence tomographic imaging of human tissue at 1.55 mm and 1.81 mm using Er- and Tm-doped fiber sources," J. Biom. Opt. 3, 76-79 (1998).
[CrossRef]

L. Goldberg, J. P. Koplow, R. P. Moeller, "High-power superfluorescent source with a side-pumped Yb-doped double-cladding fiber," Opt. Lett. 23, 1037-1039 (1998).
[CrossRef]

Supplementary Material (3)

» Media 1: MOV (530 KB)     
» Media 2: MOV (535 KB)     
» Media 3: MOV (495 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The total ASE output power from a Yb-doped fiber source as a function of the fiber-coupled pump laser power. The ASE power was measured in the direction co-propagating with the pump, directly at the fiber output.

Fig. 2.
Fig. 2.

A movie showing the co-propagating ASE spectrum as a function of the pump laser power. [Media 1]

Fig. 3.
Fig. 3.

A movie showing the calculated Fourier transform of the ASE output power spectrum as a function of the pump laser power. [Media 2]

Fig. 4.
Fig. 4.

A movie of the measured OCT signal as a function of the pump laser power. [Media 3]

Metrics