Abstract

We have investigated the possibility of using diffuse reflectance polarimetry to detect changes caused by different molecular compounds and concentrations in tissue-simulating phantoms. The effects of glucose, β-alanine and l-lysine at different concentrations in turbid media have been investigated separately. This approach is based on the effect of optical properties on the polarization state of light. The results show that this method has potential for determining changes in molecular concentrations in highly scattering biological media from polarization images.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Farrighetti, ed., The World Almanac and Book of Facts 1997, (World Almanac Books, and K-III Reference Corporation, NJ, 1996).
  2. E. Sevick-Muraca and D. Beneron, eds., Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996).
  3. M. Kohl and M. Cope, Matthias Essenpreis and Dirk B"ocker, "In uence of Glucose Concentration on Light Scattering In Tissue-Simulating Phantoms," Opt. Lett. 19, 2170-72 (1994).
    [CrossRef] [PubMed]
  4. J. S. Maier, S. A. Walker, S. Fantini, M, M. A. Franceschini, and E. Gratton, "Possible Corre- lation Between Blood Glucose Concentration and the Reduced Scattering Coefficient of Tissues in the Near Infrared," Opt. Lett. 19, 2062-64 (1994).
    [CrossRef] [PubMed]
  5. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, and M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Bocker, "Correlation Between Blood Glucose Concentration in Diabetics and Noninvasively Measured Tissue Optical Scattering Coefficient," Opt. Lett. 22, 190-2 (1997).
    [CrossRef] [PubMed]
  6. M. R. Ostermeyer, D. V. Stephens, L. -H. Wang, and S. L. Jacques, "Nearfield polarization effects on light propagation in random media," in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Trends in Optics and Photonics 3, 20-25 (1996).
  7. S. L. Jacques, M. Ostermeyer, L.-H. Wang, and D. V. Stephens, "Polarized light transmission through skin using video re ectometry: toward optical tomography of superficial tissue layers," in Lasers and Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2671, 199-210 (1996).
  8. A. H. Hielscher, A. A. Eick, J. R. Mourant, J. P. Freyer, and I. Sevick-Muraca and D. Benaron, eds., Trends in Optics and Photonics 3, 20-25 (1996). J. Bigio, "Biomedical Diagnostic with Diffusely Backscattered Linearly and Circularly Polarized Light," SPIE 2976, 298-305 (1997).
    [CrossRef]
  9. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Cote, "Measurement and calculation of the two dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett. 23, 485-487 (1998).
    [CrossRef]
  10. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, "Diffuse backscattering Mueller matrices of highly scattering media," Opt. Express 1, 441-454 (1997). http://epubs.osa.org/oearchive/source/2826.htm
    [CrossRef] [PubMed]
  11. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, "In uence of Particle Size and Concentration on the Diffuse Backscattering of Polarized Light from Tissue Phantoms and Biological Cell Suspensions," Appl. Opt. 36, 125-135 (1997).
    [CrossRef] [PubMed]
  12. M. Dogariu and T. Asakura, "Polarization Dependent Backscattering Patterns from Weakly Scattering Media," J. Optics 24, 271-278 (1993).
    [CrossRef]
  13. S. R. Pal and A. I. Carswell, "Polarization Anisotropy in Lidar Multiple Scattering from Atmospheric Clouds," Appl. Opt. 24, 3464-3471 (1985).
    [CrossRef] [PubMed]
  14. S. P. Morgan, M. P. Khong, and M. G. Somekh, "Effects of Polarization State and Scatterer Concentration on Optical Imaging Through Scattering Media," Appl. Opt. 36, 1560-65 (1997).
    [CrossRef] [PubMed]
  15. R. Greger and U. Windhorst, eds., Comprehensive Human Physiology from Cellular Mechanisms to Integration, Vol. 2 (Springer-Verlag, Berlin, 1996), p. 2328.
  16. A. C. Guyton, Textbook of medical physiology, 8th ed., (Saunders, Philadelphia, Pennsylvania, 1991).
  17. D. R. Lide, ed.-in-chief, CRC Handbook of Chemistry and Physics, 79th ed., (CRC Press LLC, Boca Raton, Florida, 1998), p. 3-12,8-64.
  18. J. G. Grasselli and W. M. Ritchey, eds., CRC Atlas of Spectral Data and Physical Constants for Organic Compounds, Vol. III (CRC Press, Inc., Cleveland, Ohio, 1975).
  19. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-14 (1991).
    [CrossRef] [PubMed]
  20. H. H. Willard, L. L. Meritt, Jr., and J. A. Dean, Instrumental Methods of Analysis (Princeton, New Jersey, 1958), pp.320-3.

Other (20)

R. Farrighetti, ed., The World Almanac and Book of Facts 1997, (World Almanac Books, and K-III Reference Corporation, NJ, 1996).

E. Sevick-Muraca and D. Beneron, eds., Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996).

M. Kohl and M. Cope, Matthias Essenpreis and Dirk B"ocker, "In uence of Glucose Concentration on Light Scattering In Tissue-Simulating Phantoms," Opt. Lett. 19, 2170-72 (1994).
[CrossRef] [PubMed]

J. S. Maier, S. A. Walker, S. Fantini, M, M. A. Franceschini, and E. Gratton, "Possible Corre- lation Between Blood Glucose Concentration and the Reduced Scattering Coefficient of Tissues in the Near Infrared," Opt. Lett. 19, 2062-64 (1994).
[CrossRef] [PubMed]

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, and M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Bocker, "Correlation Between Blood Glucose Concentration in Diabetics and Noninvasively Measured Tissue Optical Scattering Coefficient," Opt. Lett. 22, 190-2 (1997).
[CrossRef] [PubMed]

M. R. Ostermeyer, D. V. Stephens, L. -H. Wang, and S. L. Jacques, "Nearfield polarization effects on light propagation in random media," in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Trends in Optics and Photonics 3, 20-25 (1996).

S. L. Jacques, M. Ostermeyer, L.-H. Wang, and D. V. Stephens, "Polarized light transmission through skin using video re ectometry: toward optical tomography of superficial tissue layers," in Lasers and Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2671, 199-210 (1996).

A. H. Hielscher, A. A. Eick, J. R. Mourant, J. P. Freyer, and I. Sevick-Muraca and D. Benaron, eds., Trends in Optics and Photonics 3, 20-25 (1996). J. Bigio, "Biomedical Diagnostic with Diffusely Backscattered Linearly and Circularly Polarized Light," SPIE 2976, 298-305 (1997).
[CrossRef]

B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Cote, "Measurement and calculation of the two dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett. 23, 485-487 (1998).
[CrossRef]

A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, "Diffuse backscattering Mueller matrices of highly scattering media," Opt. Express 1, 441-454 (1997). http://epubs.osa.org/oearchive/source/2826.htm
[CrossRef] [PubMed]

A. H. Hielscher, J. R. Mourant, and I. J. Bigio, "In uence of Particle Size and Concentration on the Diffuse Backscattering of Polarized Light from Tissue Phantoms and Biological Cell Suspensions," Appl. Opt. 36, 125-135 (1997).
[CrossRef] [PubMed]

M. Dogariu and T. Asakura, "Polarization Dependent Backscattering Patterns from Weakly Scattering Media," J. Optics 24, 271-278 (1993).
[CrossRef]

S. R. Pal and A. I. Carswell, "Polarization Anisotropy in Lidar Multiple Scattering from Atmospheric Clouds," Appl. Opt. 24, 3464-3471 (1985).
[CrossRef] [PubMed]

S. P. Morgan, M. P. Khong, and M. G. Somekh, "Effects of Polarization State and Scatterer Concentration on Optical Imaging Through Scattering Media," Appl. Opt. 36, 1560-65 (1997).
[CrossRef] [PubMed]

R. Greger and U. Windhorst, eds., Comprehensive Human Physiology from Cellular Mechanisms to Integration, Vol. 2 (Springer-Verlag, Berlin, 1996), p. 2328.

A. C. Guyton, Textbook of medical physiology, 8th ed., (Saunders, Philadelphia, Pennsylvania, 1991).

D. R. Lide, ed.-in-chief, CRC Handbook of Chemistry and Physics, 79th ed., (CRC Press LLC, Boca Raton, Florida, 1998), p. 3-12,8-64.

J. G. Grasselli and W. M. Ritchey, eds., CRC Atlas of Spectral Data and Physical Constants for Organic Compounds, Vol. III (CRC Press, Inc., Cleveland, Ohio, 1975).

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-14 (1991).
[CrossRef] [PubMed]

H. H. Willard, L. L. Meritt, Jr., and J. A. Dean, Instrumental Methods of Analysis (Princeton, New Jersey, 1958), pp.320-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental system setup for imaging the polarization patterns of the turbid medium using a laser light source, two polarizers, a micro lens, and a CCD camera/detector.

Fig. 2.
Fig. 2.

Sample raw images as obtained by the CCD camera/detector system for glucose, β-alanine and l-lysine. Each row depicts images of increasing concentrations from left to right for the corresponding compound. The asymmetry about the horizontal axis through the center of each row is due to the 18° tilt of the CCD camera and lens system. The spot of laser incidence can be noted in the center of the butterfly patterns.

Fig. 3.
Fig. 3.

Difference images within each compound (glucose, β-alanine, l-lysine) with respect to the corresponding image for lowest concentration (241 mg/dl). Each row depicts difference images of increasing concentration from left to right for the compound labeled on the left of each row.

Fig. 4.
Fig. 4.

Ratio images within each compound (glucose, β-alanine, l-lysine) with respect to the corresponding image for lowest concentration. Each row depicts images of increasing concentration ratio from left to right for the compound labeled on the left of each row.

Fig. 5.
Fig. 5.

Correlation between raw images. Correlation is plotted for each compound, namely, glucose, β-alanine and l-lysine, with respect to the lowest concentration in each class, against increasing concentration (mg/dl).

Fig. 6.
Fig. 6.

Correlation between difference images. The absolute value of the intensity of the difference images was used to obtain positive correlation values. Correlation is plotted for each compound (glucose, β-alanine and l-lysine) against increasing concentration difference (difference relative to the 241 mg/dl images).

Fig. 7.
Fig. 7.

Mean-Square Difference for all molecular compounds with respect to the lowest concentration (241 mg/dl) image.

Fig. 8.
Fig. 8.

Root Mean-Square Difference for all molecular compounds with respect to the lowest concentration (241 mg/dl) image. Of particular importance is the linear change of the polarization patterns with respect to increasing glucose concentration.

Fig. 9.
Fig. 9.

Effect of Glucose concentration on the refractive index of water (a) and the reduced scattering coefficient of turbid medium (b). A linear relation can be observed between added glucose and refractive index of water. The same is true for added glucose and reduced scattering coefficient of turbid medium.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I d = I c I r
corr ( n , l ) = i = 1 151 j = 1 151 ( img n ( i , j ) × img l ( i , j ) ) i = 1 151 j = 1 151 ( img n ( i , j ) × img n ( i , j ) ) × i = 1 151 i = 1 151 ( img l ( i , j ) × img l ( i , j ) )
MSD ( n , l ) = 1 ( 151 ) 2 i = 1 151 j = 1 151 ( img n ( i , j ) img l ( i , j ) ) 2
RMSD ( n , l ) = MSD ( n , l )
μ s = K ( n 1 n 0 ) n 0
ϕ = ( 5.25 X 10 7 ) lc

Metrics