Abstract

A non-invasive method of imaging laser irradiated blood vessels has been achieved using Color Doppler Optical Coherence Tomography (CDOCT). This method may increase understanding of the mechanisms behind treatment of vascular disorders. The CDOCT system used a 1280 nm center wavelength superluminescent diode. A 585 nm, 360 μs pulsed dye laser was used to irradiate hamster dorsal skin flap window preparations. Irradiation sites were imaged with CDOCT prior to, immediately after, and 24 hours after laser irradiation. The processed CDOCT signal provided an estimate of the blood flow velocity. An increase in the blood vessel backscattered signal was observed as blood or vessel walls were coagulated. A decrease in damaged blood vessel reflectivity occurred after twenty four hours.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. G. Morelli, O. T. Tan, J. Garden, R. Margolis, Y. Seki, J. Boll, J. M. Carney, R. R. Anderson, H. Furumoto, J. A. Parrish, "Tunable dye laser (577 nm) treatment of port wine stains," Lasers Surg. Med. 6, 94-99 (1986).
    [CrossRef] [PubMed]
  2. O. T. Tan, P. Morrison, A. K. Kurban, "585 nm for the treatment of port-wine stains," Plastic Reconstruct. Surg. 86, 1112-1117 (1990).
    [CrossRef]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  4. J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology 191, 93-98 (1995).
    [CrossRef] [PubMed]
  5. J. K. Barton, T. E. Milner, T. J. Pfefer, S. J. Nelson, A. J. Welch, "Optical low coherence reflectometry to enhance Monte Carlo modeling of skin," J. Biomed. Opt. 2, 226-234 (1997).
    [CrossRef] [PubMed]
  6. X. J. Wang, T. E. Milner, J. S. Nelson, "Fluid flow velocity characterization by optical Doppler tomography," Opt. Lett. 20, 1337-1339 (1995).
    [CrossRef] [PubMed]
  7. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Opt. Lett. 22, 1439-1441 (1997).
    [CrossRef]
  8. Z. F. Gourgouliatos, A. J. Welch, K. R. Diller, "Microscopic instrumentation and analysis of laser-tissue interaction in a skin flap model," J. Biomech. Eng. 113, 301-307 (1991).
    [CrossRef] [PubMed]
  9. S. Kimel, L. O. Svaasand, M. Hammer-Wilson, M. J. Schell, T. E. Milner, J. S. Nelson, M. W. Berns, "Differential vascular response to laser photothermolysis," J. Invest. Derm. 103, 693-700 (1994).
    [CrossRef] [PubMed]

Other (9)

J. G. Morelli, O. T. Tan, J. Garden, R. Margolis, Y. Seki, J. Boll, J. M. Carney, R. R. Anderson, H. Furumoto, J. A. Parrish, "Tunable dye laser (577 nm) treatment of port wine stains," Lasers Surg. Med. 6, 94-99 (1986).
[CrossRef] [PubMed]

O. T. Tan, P. Morrison, A. K. Kurban, "585 nm for the treatment of port-wine stains," Plastic Reconstruct. Surg. 86, 1112-1117 (1990).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology 191, 93-98 (1995).
[CrossRef] [PubMed]

J. K. Barton, T. E. Milner, T. J. Pfefer, S. J. Nelson, A. J. Welch, "Optical low coherence reflectometry to enhance Monte Carlo modeling of skin," J. Biomed. Opt. 2, 226-234 (1997).
[CrossRef] [PubMed]

X. J. Wang, T. E. Milner, J. S. Nelson, "Fluid flow velocity characterization by optical Doppler tomography," Opt. Lett. 20, 1337-1339 (1995).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Opt. Lett. 22, 1439-1441 (1997).
[CrossRef]

Z. F. Gourgouliatos, A. J. Welch, K. R. Diller, "Microscopic instrumentation and analysis of laser-tissue interaction in a skin flap model," J. Biomech. Eng. 113, 301-307 (1991).
[CrossRef] [PubMed]

S. Kimel, L. O. Svaasand, M. Hammer-Wilson, M. J. Schell, T. E. Milner, J. S. Nelson, M. W. Berns, "Differential vascular response to laser photothermolysis," J. Invest. Derm. 103, 693-700 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Block diagram of the CDOCT system.

Fig. 2a,b,c.
Fig. 2a,b,c.

The hamster window preparation before irradiation. (a) Photograph: the white circle represents the area irradiated by the PDL. Arrows point to a venule (V) and arteriole (A) shown in the CDOCT images. Line shows the imaged location. (b) Magnitude and (c) Doppler CDOCT images: the venule (V, or blue) and arteriole (A, or red) are clearly visible in the Doppler image but only faintly in the magnitude image.

Fig. 3a,b,c.
Fig. 3a,b,c.

The hamster window preparation after a 4.5 J/cm2 pulse with a 585 nm pulsed dye laser, 360 μsec pulse duration, 5 mm spotsize. (a) Photograph: no changes in blood vessel morphology are evident. (b) Magnitude and (c) Doppler CDOCT images: appearance is substantially identical to the images prior to irradiation (Figure 2b,c)

Fig. 4a,b,c.
Fig. 4a,b,c.

The hamster window preparation after a 6.0 J/cm2 pulse with a 585 nm pulsed dye laser, 360 μsec pulse duration, 5 mm spotsize. (a) Photograph: small arrow points to an embolized coagulum which lodged at an arterial branch point. Large arrow identifies hemorrhage in small blood vessel. (b) Magnitude and (c) Doppler CDOCT images: a small fixed coagulum is seen in the venule (arrow). The arteriole is not apparent in the magnitude CDOCT image because it is full of non-coagulated, static blood. No flow is seen in the Doppler CDOCT image.

Fig. 5a,b,c.
Fig. 5a,b,c.

The hamster window preparation 24 hours after irradiation with 6.0 J/cm2 from a 585 nm PDL. (a) Photograph: lodged arterial coagula is still seen. (b) Magnitude CDOCT image: the large darker region in 5b is the fluid filled arteriole (A). (c) Doppler CDOCT image: venous flow has returned to normal; arteriole still stopped.

Tables (1)

Tables Icon

Table 1. Summary of responses to laser irradiation of window preparation blood vessels with a pulsed dye laser (585 nm, 360 μs pulse duration, 5 mm spot size)

Metrics