Abstract

We use optical coherence tomography (OCT) to perform a comprehensive program of in vivo and in vitro structural imaging of hard and soft tissues within the oral cavity. We have imaged the different types of healthy oral mucosa as well as normal and abnormal tooth structure. OCT is able to differentiate between the various types of keratinized and non-keratinized mucosa with high resolution. OCT is also able to provide detailed structural information on clinical abnormalities (caries and non-caries lesions) in teeth and provide guidance in dental restorative procedures. Our investigations demonstrate the utility of OCT as a diagnostic imaging modality in clinical and research dentistry.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. R. Matteson, S. T. Deahl, M. E. Alder, and P. V. Nummikoski, "Advanced Imaging Methods," Crit. Rev. Oral Biol. Med. 7, 346-395 (1996).
    [CrossRef] [PubMed]
  2. D. Spitzer and J. J. ten Bosch, "The Absorption and Scattering of Light in Bovine and Human Dental Enamel," Calc. Tiss. Res. 17, 129-137 (1975).
    [CrossRef]
  3. J. J. ten Bosch and J. R. Zijp, "Optical Properties of Dentin" in Dentine and Dentine Reactions in the Oral Cavity, A. Thylstrup, S. A. Leach, and V. Qvist, eds. (IRL Press Ltd., Oxford, 1987).
  4. C. Walters and D. R. Eyre, "Collagen crosslinks in human dentin: increasing content of hydroxypyridinium residues with age," Calc. Tiss. Int. 35, 401-405 (1983).
    [CrossRef]
  5. J. G. Fujimoto, M. E. Brezinski, G. T. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nature Medicine 1, 970-972 (1995).
    [CrossRef] [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  7. C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (SLACK, Thorofare, NJ, 1996).
  8. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, N. K. Nikulin, "In vivo optical coherence tomography of human skin microstructure," Proc. SPIE 2328, 144-150 (1994).
    [CrossRef]
  9. N. D. Gladkova, G. A., Petrova, N. K. Nikulin, G. V. Gelikonov, V. M. Gelikonov, and F. I. Feldchtein, "Optical coherence tomography as a technique for diagnostics of skin changes at rheumatic diseases," EULAR Journal, 24, 256-256 (1995).
  10. S. N. Roper, M. D. Moores, G. V. Gelikonov, F. I. Feldchtein, N. M. Beach, M. A. King, V. M. Gelikonov, A. M. Sergeev, and D. H. Reitze, "In vivo detection of experimentally induced cortical dysgenesis in the adult rat using optical coherence tomography," J. Neurosci. Meth. 80, 91-98 (1998).
    [CrossRef]
  11. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  12. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Yu. P. Chumakov, and O. S. Strelzova, "In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa," Opt. Exp. 1, 432-439 (1997); http://epubs.osa.org/oearchive/source/2788.htm.
    [CrossRef]
  13. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
    [CrossRef] [PubMed]
  14. M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound," Heart 77, 397-403 (1997).
    [PubMed]
  15. M. E. Brezinski, G. J. Tearney, S. A. Boppart, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics," J. Surg. Res. 71, 32-40 (1997).
    [CrossRef] [PubMed]
  16. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Op. Lett. 22 1439-1442 (1997).
    [CrossRef]
  17. Z. Chen, T. E. Milner, S. Srinivas, X. Wang A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Op. Lett. 22 1119- 1121 (1997).
    [CrossRef]
  18. B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, and H. Nathel, "Optical coherence tomography for diagnosing periodontal disease," Proc. SPIE 2973, 216-220 (1997).
    [CrossRef]
  19. B. W. Colston; M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, "Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography," Appl. Opt. 37, No. 16, 3582-3585 (1998).
    [CrossRef]
  20. J. A. Warren, Jr., G. V. Gelikonov, V. M. Gelikonov, F. I. Feldchtein, A. M. Sergeev, N. M. Beach, M. D. Moores, and D. H. Reitze, "Imaging and characterization of dental structure using optical coherence tomography," Optical Society of America Technical Digest Series 6, 128 (1998).
  21. J. F. De Boer, T. E. Milner, M. J. van Gemert, J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography," Proc. SPIE 3196, p. 32-37 (1998).
    [CrossRef]
  22. A. R. Ten Cate, Oral Histology: Development, Structure, and Function (Mosby, St. Louis, 1994).
  23. W. C. Lee and W. S. Eakle, "Possible role of tensile stress in the etiology of cervical erosive lesions in teeth," J. Prosthetic Dent. 52, 374-380 (1984).
    [CrossRef]
  24. H. O. Heymann, J. R. Sturdevant, S. Bayne, A. D. Wilder, T. B. Studer, and W. D. Brunson, "Examining tooth flexure effects," J. Am. Dent. Assoc. 122, 41-47 (1991).
    [PubMed]

Other (24)

S. R. Matteson, S. T. Deahl, M. E. Alder, and P. V. Nummikoski, "Advanced Imaging Methods," Crit. Rev. Oral Biol. Med. 7, 346-395 (1996).
[CrossRef] [PubMed]

D. Spitzer and J. J. ten Bosch, "The Absorption and Scattering of Light in Bovine and Human Dental Enamel," Calc. Tiss. Res. 17, 129-137 (1975).
[CrossRef]

J. J. ten Bosch and J. R. Zijp, "Optical Properties of Dentin" in Dentine and Dentine Reactions in the Oral Cavity, A. Thylstrup, S. A. Leach, and V. Qvist, eds. (IRL Press Ltd., Oxford, 1987).

C. Walters and D. R. Eyre, "Collagen crosslinks in human dentin: increasing content of hydroxypyridinium residues with age," Calc. Tiss. Int. 35, 401-405 (1983).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. T. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nature Medicine 1, 970-972 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (SLACK, Thorofare, NJ, 1996).

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, N. K. Nikulin, "In vivo optical coherence tomography of human skin microstructure," Proc. SPIE 2328, 144-150 (1994).
[CrossRef]

N. D. Gladkova, G. A., Petrova, N. K. Nikulin, G. V. Gelikonov, V. M. Gelikonov, and F. I. Feldchtein, "Optical coherence tomography as a technique for diagnostics of skin changes at rheumatic diseases," EULAR Journal, 24, 256-256 (1995).

S. N. Roper, M. D. Moores, G. V. Gelikonov, F. I. Feldchtein, N. M. Beach, M. A. King, V. M. Gelikonov, A. M. Sergeev, and D. H. Reitze, "In vivo detection of experimentally induced cortical dysgenesis in the adult rat using optical coherence tomography," J. Neurosci. Meth. 80, 91-98 (1998).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Yu. P. Chumakov, and O. S. Strelzova, "In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa," Opt. Exp. 1, 432-439 (1997); http://epubs.osa.org/oearchive/source/2788.htm.
[CrossRef]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound," Heart 77, 397-403 (1997).
[PubMed]

M. E. Brezinski, G. J. Tearney, S. A. Boppart, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics," J. Surg. Res. 71, 32-40 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Op. Lett. 22 1439-1442 (1997).
[CrossRef]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Op. Lett. 22 1119- 1121 (1997).
[CrossRef]

B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, and H. Nathel, "Optical coherence tomography for diagnosing periodontal disease," Proc. SPIE 2973, 216-220 (1997).
[CrossRef]

B. W. Colston; M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, "Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography," Appl. Opt. 37, No. 16, 3582-3585 (1998).
[CrossRef]

J. A. Warren, Jr., G. V. Gelikonov, V. M. Gelikonov, F. I. Feldchtein, A. M. Sergeev, N. M. Beach, M. D. Moores, and D. H. Reitze, "Imaging and characterization of dental structure using optical coherence tomography," Optical Society of America Technical Digest Series 6, 128 (1998).

J. F. De Boer, T. E. Milner, M. J. van Gemert, J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography," Proc. SPIE 3196, p. 32-37 (1998).
[CrossRef]

A. R. Ten Cate, Oral Histology: Development, Structure, and Function (Mosby, St. Louis, 1994).

W. C. Lee and W. S. Eakle, "Possible role of tensile stress in the etiology of cervical erosive lesions in teeth," J. Prosthetic Dent. 52, 374-380 (1984).
[CrossRef]

H. O. Heymann, J. R. Sturdevant, S. Bayne, A. D. Wilder, T. B. Studer, and W. D. Brunson, "Examining tooth flexure effects," J. Am. Dent. Assoc. 122, 41-47 (1991).
[PubMed]

Supplementary Material (1)

» Media 1: MOV (1159 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

OCT image of the hard palate mucosa. The squamous epithelium appears as the 170 μm top layer above the 200 μm thick lamina propria. All scales are shown in millimeters, for vertical scale in tissue an average refraction index n=1.4 is assumed.

Fig. 2.
Fig. 2.

OCT image of the gingival mucosa, showing the epithelium (~ 250 μm) and lamina propria (~ 250 μm). The epithelium and lamina propria are not well differentiated in the scan.

Fig. 3.
Fig. 3.

The mucosa of the soft palate as seen via OCT. The epithelium and lamina propria are distinct. Submucosa and connective tissue are also evident.

Fig. 4.
Fig. 4.

An OCT B-scan of the vestibular alveolar mucosa. The epithelium is thin (~ 150 μm) and covers the 500 μm thick lamina propria.

Fig. 5.
Fig. 5.

- Zona maxilaris region of the buccal mucosa. The imaging depth in the zona maxilaris is ~ 650 μm.

Fig. 6.
Fig. 6.

Zona maxilaris region of the buccal mucosa closer to the zona intermedia.

Fig. 7.
Fig. 7.

The mucosa of the lingual dorsum as seen via OCT. The mucosa of the lingual dorsum has no submucosa and is directly attached to the muscular body of the tongue.

Fig. 8.
Fig. 8.

OCT image of tooth #11 in normal polarization, scanned perpendicular to its facial surface from the incisal edge to the center of the tooth. The facial enamel (E), dentin (D), and DEJ are clearly visible in the scan. The lines in the facial enamel may be fault lines caused by incremental growth.

Fig. 9.
Fig. 9.

OCT image of the same region of tooth #11 as in Fig. 8, but scanned in orthogonal polarization. The amount of backscattered light is reduced with respect to Fig. 8. In addition, the lines present in the facial enamel show better contrast.

Fig. 10.
Fig. 10.

First frame of a 3D image of a composite resin dental restoration taken in vitro. The restoration is evident in the center of the scan. [Media 1]

Fig. 11.
Fig. 11.

OCT image of a caries lesion located in the fissure of tooth # 44. The lesion is indicated by a strongly backscattering region on the tooth surface in the fissure area.

Fig. 12.
Fig. 12.

A cervical caries lesion (CL) viewed by OCT. The DEJ can be seen to the left of the lesion; the gingiva (G) is evident on the right side of the scan.

Fig. 13.
Fig. 13.

OCT image of a caries lesion immersed in dentin below a composite resin prosthesis placed through the occlusal surface.

Fig. 14.
Fig. 14.

OCT images of a caries lesion evidencing a small surface cavitation.

Fig. 15.
Fig. 15.

Conventional X-ray image corresponding to the OCT image shown in Fig. 11.

Fig. 16.
Fig. 16.

OCT image of a non-caries (abfraction) lesion (NCL). Note that the lesion is evident only in enamel and is supported by intact dentin.

Fig. 17.
Fig. 17.

OCT images of dental restorations using (a) amalgam, (b) composite resin (CR), and (c) compomer (C). The composite resin and compomer can be completely imaged by OCT.

Fig. 18.
Fig. 18.

OCT images of filling defects: (a) bubble, (b) gap.

Fig. 19.
Fig. 19.

(a) A preoperative OCT image of a caries lesion in the cervical area of the root. (b) The lesion scanned after diamond burr drilling, showing the smear layer produced by the action of the drilling. (c) Acid etching removes the smear layer. (d) The tooth has been restored using a composite resin.

Metrics