Abstract

Optical coherence tomography (OCT) has been applied to the study of the microscopic deformation of biological tissue under compressive stress. We describe the hardware and theory of operation of an OCT elastography system that measures internal displacements as small as a few micrometers by using 2D cross-correlation speckle tracking. Results obtained from gelatin scattering models, pork meat, and intact skin suggest possible medical applications of the technique.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Parker, L. Gao, R. M. Lerner, and S. F. Levinson, “Techniques for elastic imaging: A review,” IEEE Eng. Med. Biol. Mag 15, 52–59 (1996).
    [CrossRef]
  2. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li,“Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultras. Imaging 13, 111–134 (1991).
    [CrossRef]
  3. A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
    [CrossRef]
  4. Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultras., Ferro., Freq. Control 37, 223–240 (1990).
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
    [CrossRef] [PubMed]
  6. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
    [PubMed]
  7. J. A. Izatt, M. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welsh, “Optical coherence tomography for biodiagnostics,” Optics and Photonics News 8, 41–47 (1997).
    [CrossRef]
  8. B. Bouma, G. J. Tearney, S.A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
    [CrossRef] [PubMed]
  9. J. A. Smith, R. Muthupillai, P. J. Rossman, T. C. Hulshizer, J. F. Greenleaf, and R. L. Ehman, “Characterization of biomaterials using magnetic resonance elastography,” Rev. Progr. Quantitat. NonDestr. Eval. 2, 1323–1330 (1997).
  10. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogenous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [CrossRef]
  11. T. Varghese, M. Bilgen, and J. Ophir “Multiresolution imaging in elastography,” IEEE Trans. Ultras., Ferro., Freq. Control 45, 65–75 (1998).
    [CrossRef]
  12. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
    [CrossRef]
  13. R. E. Boucher and J. C. Hassab,“Analysis of discrete implementation of generalized cross correlator,” IEEE Trans. Acoust. Speech, Signal Proc. 29, 609–611 (1981).
    [CrossRef]

1998 (1)

T. Varghese, M. Bilgen, and J. Ophir “Multiresolution imaging in elastography,” IEEE Trans. Ultras., Ferro., Freq. Control 45, 65–75 (1998).
[CrossRef]

1997 (4)

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

J. A. Smith, R. Muthupillai, P. J. Rossman, T. C. Hulshizer, J. F. Greenleaf, and R. L. Ehman, “Characterization of biomaterials using magnetic resonance elastography,” Rev. Progr. Quantitat. NonDestr. Eval. 2, 1323–1330 (1997).

J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogenous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

J. A. Izatt, M. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welsh, “Optical coherence tomography for biodiagnostics,” Optics and Photonics News 8, 41–47 (1997).
[CrossRef]

1996 (1)

K. J. Parker, L. Gao, R. M. Lerner, and S. F. Levinson, “Techniques for elastic imaging: A review,” IEEE Eng. Med. Biol. Mag 15, 52–59 (1996).
[CrossRef]

1995 (2)

A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

B. Bouma, G. J. Tearney, S.A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

1993 (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li,“Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultras. Imaging 13, 111–134 (1991).
[CrossRef]

1990 (1)

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultras., Ferro., Freq. Control 37, 223–240 (1990).

1981 (1)

R. E. Boucher and J. C. Hassab,“Analysis of discrete implementation of generalized cross correlator,” IEEE Trans. Acoust. Speech, Signal Proc. 29, 609–611 (1981).
[CrossRef]

Adler, R. S.

A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Barton, J. K.

J. A. Izatt, M. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welsh, “Optical coherence tomography for biodiagnostics,” Optics and Photonics News 8, 41–47 (1997).
[CrossRef]

Bilgen, M.

T. Varghese, M. Bilgen, and J. Ophir “Multiresolution imaging in elastography,” IEEE Trans. Ultras., Ferro., Freq. Control 45, 65–75 (1998).
[CrossRef]

Boppart, S.A.

Boucher, R. E.

R. E. Boucher and J. C. Hassab,“Analysis of discrete implementation of generalized cross correlator,” IEEE Trans. Acoust. Speech, Signal Proc. 29, 609–611 (1981).
[CrossRef]

Bouma, B.

Brezinski, M. E.

Buxton, R. B.

A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Carson, P. L.

A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Céspedes, I.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li,“Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultras. Imaging 13, 111–134 (1991).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Ehman, R. L.

J. A. Smith, R. Muthupillai, P. J. Rossman, T. C. Hulshizer, J. F. Greenleaf, and R. L. Ehman, “Characterization of biomaterials using magnetic resonance elastography,” Rev. Progr. Quantitat. NonDestr. Eval. 2, 1323–1330 (1997).

Emelianov, S. Y.

A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Fowlkes, J. B.

A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Fujimoto, J. G.

B. Bouma, G. J. Tearney, S.A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Gao, L.

K. J. Parker, L. Gao, R. M. Lerner, and S. F. Levinson, “Techniques for elastic imaging: A review,” IEEE Eng. Med. Biol. Mag 15, 52–59 (1996).
[CrossRef]

Greenleaf, J. F.

J. A. Smith, R. Muthupillai, P. J. Rossman, T. C. Hulshizer, J. F. Greenleaf, and R. L. Ehman, “Characterization of biomaterials using magnetic resonance elastography,” Rev. Progr. Quantitat. NonDestr. Eval. 2, 1323–1330 (1997).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Hassab, J. C.

R. E. Boucher and J. C. Hassab,“Analysis of discrete implementation of generalized cross correlator,” IEEE Trans. Acoust. Speech, Signal Proc. 29, 609–611 (1981).
[CrossRef]

Hee, M. R.

B. Bouma, G. J. Tearney, S.A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Hulshizer, T. C.

J. A. Smith, R. Muthupillai, P. J. Rossman, T. C. Hulshizer, J. F. Greenleaf, and R. L. Ehman, “Characterization of biomaterials using magnetic resonance elastography,” Rev. Progr. Quantitat. NonDestr. Eval. 2, 1323–1330 (1997).

Izatt, J. A.

J. A. Izatt, M. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welsh, “Optical coherence tomography for biodiagnostics,” Optics and Photonics News 8, 41–47 (1997).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Knüttel, A.

Kobayashi, K.

J. A. Izatt, M. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welsh, “Optical coherence tomography for biodiagnostics,” Optics and Photonics News 8, 41–47 (1997).
[CrossRef]

Kulkarni, M.

J. A. Izatt, M. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welsh, “Optical coherence tomography for biodiagnostics,” Optics and Photonics News 8, 41–47 (1997).
[CrossRef]

Lee, S. L.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

Lerner, R. M.

K. J. Parker, L. Gao, R. M. Lerner, and S. F. Levinson, “Techniques for elastic imaging: A review,” IEEE Eng. Med. Biol. Mag 15, 52–59 (1996).
[CrossRef]

Levinson, S. F.

K. J. Parker, L. Gao, R. M. Lerner, and S. F. Levinson, “Techniques for elastic imaging: A review,” IEEE Eng. Med. Biol. Mag 15, 52–59 (1996).
[CrossRef]

Li, X.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li,“Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultras. Imaging 13, 111–134 (1991).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Muthupillai, R.

J. A. Smith, R. Muthupillai, P. J. Rossman, T. C. Hulshizer, J. F. Greenleaf, and R. L. Ehman, “Characterization of biomaterials using magnetic resonance elastography,” Rev. Progr. Quantitat. NonDestr. Eval. 2, 1323–1330 (1997).

Ophir, J.

T. Varghese, M. Bilgen, and J. Ophir “Multiresolution imaging in elastography,” IEEE Trans. Ultras., Ferro., Freq. Control 45, 65–75 (1998).
[CrossRef]

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li,“Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultras. Imaging 13, 111–134 (1991).
[CrossRef]

Parker, K. J.

K. J. Parker, L. Gao, R. M. Lerner, and S. F. Levinson, “Techniques for elastic imaging: A review,” IEEE Eng. Med. Biol. Mag 15, 52–59 (1996).
[CrossRef]

Pipe, J. G.

A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Ponnekanti, H.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li,“Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultras. Imaging 13, 111–134 (1991).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Rossman, P. J.

J. A. Smith, R. Muthupillai, P. J. Rossman, T. C. Hulshizer, J. F. Greenleaf, and R. L. Ehman, “Characterization of biomaterials using magnetic resonance elastography,” Rev. Progr. Quantitat. NonDestr. Eval. 2, 1323–1330 (1997).

Sarvazyan, A. P.

A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Sato, J.

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultras., Ferro., Freq. Control 37, 223–240 (1990).

Sato, T.

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultras., Ferro., Freq. Control 37, 223–240 (1990).

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Schmitt, J. M.

J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogenous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Sivak, M. V.

J. A. Izatt, M. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welsh, “Optical coherence tomography for biodiagnostics,” Optics and Photonics News 8, 41–47 (1997).
[CrossRef]

Skovoroda, A. R.

A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Smith, J. A.

J. A. Smith, R. Muthupillai, P. J. Rossman, T. C. Hulshizer, J. F. Greenleaf, and R. L. Ehman, “Characterization of biomaterials using magnetic resonance elastography,” Rev. Progr. Quantitat. NonDestr. Eval. 2, 1323–1330 (1997).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Varghese, T.

T. Varghese, M. Bilgen, and J. Ophir “Multiresolution imaging in elastography,” IEEE Trans. Ultras., Ferro., Freq. Control 45, 65–75 (1998).
[CrossRef]

Welsh, A. J.

J. A. Izatt, M. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welsh, “Optical coherence tomography for biodiagnostics,” Optics and Photonics News 8, 41–47 (1997).
[CrossRef]

Yamakoshi, Y.

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultras., Ferro., Freq. Control 37, 223–240 (1990).

Yazdi, Y.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li,“Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultras. Imaging 13, 111–134 (1991).
[CrossRef]

Yung, K. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

Acoust. Imaging (1)

A. P. Sarvazyan, A. R. Skovoroda, S. Y. Emelianov, J. B. Fowlkes, J. G. Pipe, R. S. Adler, R. B. Buxton, and P. L. Carson,“Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995).
[CrossRef]

Am. J. Ophthalmol. (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

IEEE Eng. Med. Biol. Mag (1)

K. J. Parker, L. Gao, R. M. Lerner, and S. F. Levinson, “Techniques for elastic imaging: A review,” IEEE Eng. Med. Biol. Mag 15, 52–59 (1996).
[CrossRef]

IEEE Trans. Acoust. Speech, Signal Proc. (1)

R. E. Boucher and J. C. Hassab,“Analysis of discrete implementation of generalized cross correlator,” IEEE Trans. Acoust. Speech, Signal Proc. 29, 609–611 (1981).
[CrossRef]

IEEE Trans. Ultras., Ferro., Freq. Control (2)

T. Varghese, M. Bilgen, and J. Ophir “Multiresolution imaging in elastography,” IEEE Trans. Ultras., Ferro., Freq. Control 45, 65–75 (1998).
[CrossRef]

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultras., Ferro., Freq. Control 37, 223–240 (1990).

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

Opt. Lett. (1)

Optics and Photonics News (1)

J. A. Izatt, M. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welsh, “Optical coherence tomography for biodiagnostics,” Optics and Photonics News 8, 41–47 (1997).
[CrossRef]

Rev. Progr. Quantitat. NonDestr. Eval. (1)

J. A. Smith, R. Muthupillai, P. J. Rossman, T. C. Hulshizer, J. F. Greenleaf, and R. L. Ehman, “Characterization of biomaterials using magnetic resonance elastography,” Rev. Progr. Quantitat. NonDestr. Eval. 2, 1323–1330 (1997).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254,1178–1181 (1991).
[CrossRef] [PubMed]

Ultras. Imaging (1)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li,“Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultras. Imaging 13, 111–134 (1991).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (783 KB)     
» Media 2: MOV (442 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Figure 1.
Figure 1.

Setup of experimental elastography system built around a scanning white-light interferometer.

Figure 2.
Figure 2.

Image processing steps used to obtain quantitative estimates of local displacement and strain.

Figure 3.
Figure 3.

10-frame movie showing a sequence of OCT images taken during stepwise compression of a gelatin phantom (5 μm displacement of the top surface per step) The dimensions of the images are 1 mm (width) × 1 mm (depth) and the intensities are mapped onto a logarithmic gray scale. [Media 1]

Figure 4.
Figure 4.

Internal structure of the gelatin scattering model from which the sequence of images in Fig. 3 were obtained.

Figure 5.
Figure 5.

Displacement vector field d→(r, z) measured for the gelatin model sequence over the first 5 frames. The bar gives the scale of the vector lengths.

Figure 6.
Figure 6.

5-frame movie showing a sequence of OCT images taken during stepwise compression of pork meat (10 μm displacement of the top surface per step) The dimensions of the images are 1.2 mm (width)× 0.7 mm (depth) and the intensities are mapped onto a logarithmic gray scale. [Media 2]

Figure 7.
Figure 7.

Internal composition of the pork meat sample, showing the location of the muscle and fat layers.

Figure 8.
Figure 8.

(a) Image of the axial displacements inside the pork meat sample, calculated by cross correlation analysis over the 5-frame sequence. The black areas outlined with dotted lines indicate where the signal-to-noise ratio was too low for calculation of the displacements, (b) Strains estimation for the areas marked ‘1’ and ‘2’ in in the displacement image on the left.

Figure 9.
Figure 9.

(a) Unprocessed OCT image of the skin of the finger, acquired in vivo with compression applied during every other A-line. (b) Image reconstructed by realigning displaced pixels, (c) and (d) Enlarged regions of upper images. The dimensions of the upper images are 1.2 mm (width)× 0.7 mm (depth). The intensities are mapped onto a logarithmic gray scale.

Figure 10.
Figure 10.

Images of (a) lateral and (b) axial displacement of the skin.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I r z = exp ( 2 μ ¯ s z ) σ b r z h r r τ τ r dr
= exp ( 2 μ ¯ s z ) [ σ b r z * * h r τ ]
h r τ = Γ ( τ ) p ( r )
Γ ( τ ) = Re [ E s ( t ) E s * ( t + τ ) ]
= exp ( τ 2 τ c 2 ) cos ( 2 k 0 )
p ( r ) = exp [ r 2 ( 4 f 2 k 0 2 D 2 ) ]
I 1 r z = [ δ r z σ b * * h r τ ] exp ( 2 μ ¯ s z )
= h 0,0 σ b exp ( 2 μ ¯ s z )
I 2 r z = [ δ r + r d z + z d σ b * * h r τ ] exp ( 2 μ ¯ s z )
= h r d 2 n z d c σ b exp ( 2 μ ¯ s z )
ρ r z = Z 2 Z 2 R 2 R 2 I 1 r z I 2 ( r r , z z ) drdz Z 2 Z 2 R 2 R 2 I 1 2 r z drdz Z 2 Z 2 R 2 R 2 I 2 2 r r z z drdz
r ̂ d = max { ρ r z } for z = 0 , R 2 r R 2 .
z ̂ d = max { ρ r z } for r = 0 , Z 2 z Z 2
s r z = lim Δ r , Δ z 0 d r z d ( r + Δ r , z + Δ z ) ( Δ r ) 2 + ( Δ z ) 2
s ̂ z r z Δ d z Δ z = d ̂ z r z d ̂ z ( r , z + Δ z ) Δ z
ρ i j = i = M 2 M 2 j = N 2 N 2 I 1 i 0 j 0 I 2 i 0 i j 0 j i = M 2 M 2 j = N 2 N 2 I 1 2 r z i = M 2 M 2 j = N 2 N 2 I 2 2 i 0 i j 0 j

Metrics