Abstract

Mismatched boundary conditions such as air-sample interface introduce artifacts that obscure internal information in the reconstructed laser computed tomographic (CT) images. Here, we demonstrate enhancement of target structure in the laser CT images by correcting the projection data using the experimentally determined angle dependence of sample surface attenuation. The images reconstructed with the corrected projection data are shown to have improved image contrast. Our proposed correction to laser CT reconstruction is effective for visualizing internal structure with small variations in the attenuation coefficients that would otherwise be masked by the dominant surface attenuation.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. L. Byer and L. A. Shepp, "Two-dimensional remote air pollution monitoring via tomography," Opt. Lett. 4, 75-77 (1979).
    [CrossRef] [PubMed]
  2. B. W. Stuck, "A new proposal for estimating the spatial concentration of certain types of air pollutants," J. Opt. Soc. Am. 67, 668-678 (1977).
    [CrossRef]
  3. R. J. Santotro, H. G. Semerjian, P. J. Emmerman and R. Goulard, "Optical tomography for flow field diagnostics," Int. J. Heat Mass Transfer 24, 1139-1150 (1981).
    [CrossRef]
  4. David C. Wolfe, Jr. and Robert L. Byer, "Model studies of laser absorption computed tomography for remote air pollution measurement," Appl. Opt. 21, 1165-1178 (1982).
    [CrossRef] [PubMed]
  5. Edward J. Beiting, "Fast optical absorption tomography," Opt. Lett. 16, 1280-1282 (1991).
    [CrossRef] [PubMed]
  6. Keith E. Bennett, Gregory W. Faris, and Robert L. Byer, "Experimental optical fan beam tomography," Appl. Opt. 23, 2678-2685 (1984).
    [CrossRef] [PubMed]
  7. R. Koslover and R. McWilliams, "Measurement of multidimensional ion velocity distributions by optical tomography," Rev. Sci. Instrum. 57, 2441-2448 (1986).
    [CrossRef]
  8. L. McMackin, R. J. Hugo, R. E. Pierson and C. R. Truman, "High speed optical tomography system for imaging dynamic transparent media," Opt. Express 1, 302-311 (1997). http://epubs.osa.org/oearchive/source/pdf/2360.pdf
    [CrossRef] [PubMed]
  9. R. R. Alfano and J. G. Fujimoto, eds. OSA Trends in Optics and Photonics on Advantages in Optical Imaging and Photon Migration, 2, OSA, Washington, DC, (1996).
  10. S. B. Colak, D. G. Papaioannou, G. W. Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen and N. A. A. J. van Asten, "Tomographic image reconstruction from optical projections in light-diffusing media," Appl. Opt. 36, 180-213 (1997).
    [CrossRef] [PubMed]
  11. Scott A. Walker, Sergio Fantini and Enrico Gratton, "Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media," Appl. Opt. 39, 170-179 (1997).
    [CrossRef]
  12. H. Inaba, "Coherent detection imaging for medical laser tomography," in Medical Optical Tomography: Functional Imaging and Monitoring, SPIE Institutes for Advanced Optical Technologies, G. M?ller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg and P. van der Zee, Eds, (SPIE Opt. Eng. Press, Bellingham, WA, 1993), Vol. IS11, 317-347.
  13. B. Devaraj, M. Usa, Kin Pui Chan, T. Akatsuka and H. Inaba, "Recent Advances in Coherent Detection Imaging (CDI) in Biomedicine: Laser Tomography of Human Tissues In Vivo and In Vitro," IEEE J. Selected Topics in Quant. Electron. 2, 1008-1016 (1996).
    [CrossRef]
  14. B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada and H. Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
    [CrossRef]
  15. K. P. Chan, B. Devaraj, M. Yamada and H. Inaba, "Coherent detection techniques in optical imaging of tissues," Phys. in Med. and Bio. 42, 855-867 (1997).
    [CrossRef]
  16. Humio Inaba, "Photonic Sensing Technology is Opening New Frontiers in Biophotonics," Opt. Rev. 4, 1-10 (1997).
    [CrossRef]
  17. B. Devaraj, K. Fukuchi, K. P. Chan, M. Usa, Y. Tanno, M. Takeda, M. Kobayashi and H. Inaba, "Spectroscopic measurement of transmission characteristics of tissue-like phantoms," in CLEO/Pacific Rim `95 Tech. Dig. Ser. (OSA ,Washington, DC, 1995), 126-127.
  18. K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan and H. Inaba, "High sensitivity spectroscopic measurement of optical transmission characteristics of a biological tissue phantom "Intralipid-10%" using optical heterodyne detection method," Kogaku (Japanese J. Optics), 27, 40-47 (1998), (in Japanese).
  19. H. J. van Staveren, C. J. M. Mose, J. van Marle, S. A. Prahl and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4517 (1991).
    [CrossRef] [PubMed]

Other (19)

R. L. Byer and L. A. Shepp, "Two-dimensional remote air pollution monitoring via tomography," Opt. Lett. 4, 75-77 (1979).
[CrossRef] [PubMed]

B. W. Stuck, "A new proposal for estimating the spatial concentration of certain types of air pollutants," J. Opt. Soc. Am. 67, 668-678 (1977).
[CrossRef]

R. J. Santotro, H. G. Semerjian, P. J. Emmerman and R. Goulard, "Optical tomography for flow field diagnostics," Int. J. Heat Mass Transfer 24, 1139-1150 (1981).
[CrossRef]

David C. Wolfe, Jr. and Robert L. Byer, "Model studies of laser absorption computed tomography for remote air pollution measurement," Appl. Opt. 21, 1165-1178 (1982).
[CrossRef] [PubMed]

Edward J. Beiting, "Fast optical absorption tomography," Opt. Lett. 16, 1280-1282 (1991).
[CrossRef] [PubMed]

Keith E. Bennett, Gregory W. Faris, and Robert L. Byer, "Experimental optical fan beam tomography," Appl. Opt. 23, 2678-2685 (1984).
[CrossRef] [PubMed]

R. Koslover and R. McWilliams, "Measurement of multidimensional ion velocity distributions by optical tomography," Rev. Sci. Instrum. 57, 2441-2448 (1986).
[CrossRef]

L. McMackin, R. J. Hugo, R. E. Pierson and C. R. Truman, "High speed optical tomography system for imaging dynamic transparent media," Opt. Express 1, 302-311 (1997). http://epubs.osa.org/oearchive/source/pdf/2360.pdf
[CrossRef] [PubMed]

R. R. Alfano and J. G. Fujimoto, eds. OSA Trends in Optics and Photonics on Advantages in Optical Imaging and Photon Migration, 2, OSA, Washington, DC, (1996).

S. B. Colak, D. G. Papaioannou, G. W. Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen and N. A. A. J. van Asten, "Tomographic image reconstruction from optical projections in light-diffusing media," Appl. Opt. 36, 180-213 (1997).
[CrossRef] [PubMed]

Scott A. Walker, Sergio Fantini and Enrico Gratton, "Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media," Appl. Opt. 39, 170-179 (1997).
[CrossRef]

H. Inaba, "Coherent detection imaging for medical laser tomography," in Medical Optical Tomography: Functional Imaging and Monitoring, SPIE Institutes for Advanced Optical Technologies, G. M?ller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg and P. van der Zee, Eds, (SPIE Opt. Eng. Press, Bellingham, WA, 1993), Vol. IS11, 317-347.

B. Devaraj, M. Usa, Kin Pui Chan, T. Akatsuka and H. Inaba, "Recent Advances in Coherent Detection Imaging (CDI) in Biomedicine: Laser Tomography of Human Tissues In Vivo and In Vitro," IEEE J. Selected Topics in Quant. Electron. 2, 1008-1016 (1996).
[CrossRef]

B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada and H. Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996).
[CrossRef]

K. P. Chan, B. Devaraj, M. Yamada and H. Inaba, "Coherent detection techniques in optical imaging of tissues," Phys. in Med. and Bio. 42, 855-867 (1997).
[CrossRef]

Humio Inaba, "Photonic Sensing Technology is Opening New Frontiers in Biophotonics," Opt. Rev. 4, 1-10 (1997).
[CrossRef]

B. Devaraj, K. Fukuchi, K. P. Chan, M. Usa, Y. Tanno, M. Takeda, M. Kobayashi and H. Inaba, "Spectroscopic measurement of transmission characteristics of tissue-like phantoms," in CLEO/Pacific Rim `95 Tech. Dig. Ser. (OSA ,Washington, DC, 1995), 126-127.

K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan and H. Inaba, "High sensitivity spectroscopic measurement of optical transmission characteristics of a biological tissue phantom "Intralipid-10%" using optical heterodyne detection method," Kogaku (Japanese J. Optics), 27, 40-47 (1998), (in Japanese).

H. J. van Staveren, C. J. M. Mose, J. van Marle, S. A. Prahl and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4517 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Incident angle dependence in laser CT scan. I0 is incident intensity, Iin (φm ,rn ) is light intensity launched into sample, It (φm ,rn ) is transmitted intensity, θ is incident angle and R is the sample radius.

Fig. 2
Fig. 2

Schematic diagram of the coherent detection imaging system. L1 and L2 are collimated lenses. M1, M2, and M3 are mirrors. BS and PBS are beam splitter and polarizing beam splitter, respectively. AOM1 and AOM2 are acousto-optic modulators.

Fig. 3
Fig. 3

Attenuation due to changes in the incident angle of a 5 mm thick acrylic plate with ground surfaces.

Fig. 4
Fig. 4

(a) Schematic representation of the sample. The acrylic sample was 30 mm in diameter with a 12 mm in diameter hole filled with Intralipid-10% 20 ml/l. The outer surface of the sample was ground by sand paper to make the surface rough.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[ r s ] = [ cos φ sin φ sin φ cos φ ] [ x y ]
I in φ m r n = α· I 0 ( 0 < α < 1 )
I t φ m r n = I in φ m r n · exp ( μ t ds )
10 log { I t φ m r n I 0 } = 10 log { α· exp ( μ t ds ) }
= 10 log ( α ) + 10 log { exp ( μ t ds ) }
f ( θ ) = 87 + 42 · exp ( θ 2 0.4 )
10 log ( α ) f ( θ )
10 log { exp ( μ t ds ) } = 10 log { I t φ m r n I 0 } f ( θ )
= 10 log { I t φ m r n I 0 } f { sin 1 ( r n R ) }
C = I t arg et I min I max I min ,

Metrics