Abstract

Crystal structures of Calcium ions have been prepared in a linear Paul trap and their collective motion excited with resonant rf-fields. The trapped ions are laser-cooled and images of the fluorescing ions are obtained with a CCD camera and show high spatial resolution. Crystals with up to 15 ions arrange in a linear string and their eigenmodes can subsequently be selectively excited. The collective motion of the string can then be observed via the CCD images.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Blatt, "Spectroscopy and Quantum Optics with Stored Ions," in Atomic Physics 14, ed. by D. J. Wineland, C. E. Wieman, S. J. Smith, (AIP, New York, 1995) p. 219-239.
  2. D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, D. J. Wineland, "Generation of Nonclassical Motional States of a Trapped Atom," Phys. Rev. Lett. 76, 1796 (1996).
    [CrossRef] [PubMed]
  3. C. Monroe, D. M. Meekhof, B. E. King, D. J. Wineland, "A `Schroedinger Cat' Superposition of an Atom," Science 272, 1131-1136 (1996).
    [CrossRef] [PubMed]
  4. H. C. Naegerl, W. Bechter, J. Eschner, F. Schmidt-Kaler, R. Blatt, "Ion Strings for Quantum Gates," Appl. Phys. B 66, 603-608 (1998).
    [CrossRef]
  5. C. Monroe, D. M. Meekhof, B. E. King, S. R. Jeers, W. M. Itano, D. J. Wineland, P. Gould, "Resolved-Sideband Raman Cooling of a Bound Atom to the 3D Zero-Point Energy," Phys. Rev. Lett. 75, 4011-4014 (1995).
    [CrossRef] [PubMed]
  6. B. E. King, C. S. Wood, C. J. Myatt, Q. A. Turchette, D. Leibfried, W. M. Itano, C. Monroe, D. J. Wineland, "Initializing the Collective Motion of Trapped Ions for Quantum Logic," quant-ph/9803023. http://xxx.lanl.gov/abs/quant-ph/9803023
  7. J. I. Cirac, P. Zoller, "Quantum Computations with Cold Trapped Ions," Phys. Rev. Lett. 74, 4091-4094 (1995).
    [CrossRef] [PubMed]
  8. D. F. V. James, "Quantum Dynamics of Cold Trapped Ions with Application to Quantum Computation," Appl. Phys. B 66 181-190 (1998).
    [CrossRef]
  9. A. Steane, "The Ion Trap Quantum Information Processor," Appl. Phys. B 64 623-642 (1997).
    [CrossRef]
  10. F. Diedrich, J. C. Berquist, W. M. Itano, D. J. Wineland, "Laser Cooling to the Zero-Point Energy of Motion," Phys. Rev. Lett. 62, 403-406 (1989).
    [CrossRef] [PubMed]
  11. I. Marzoli, J. I. Cirac, R. Blatt, P. Zoller, "Laser Cooling of Trapped Three-Level Ions: Designing Two-Level Systems for Sideband Cooling," Phys. Rev. A 49, 2771-2779 (1994).
    [CrossRef] [PubMed]

Other (11)

R. Blatt, "Spectroscopy and Quantum Optics with Stored Ions," in Atomic Physics 14, ed. by D. J. Wineland, C. E. Wieman, S. J. Smith, (AIP, New York, 1995) p. 219-239.

D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, D. J. Wineland, "Generation of Nonclassical Motional States of a Trapped Atom," Phys. Rev. Lett. 76, 1796 (1996).
[CrossRef] [PubMed]

C. Monroe, D. M. Meekhof, B. E. King, D. J. Wineland, "A `Schroedinger Cat' Superposition of an Atom," Science 272, 1131-1136 (1996).
[CrossRef] [PubMed]

H. C. Naegerl, W. Bechter, J. Eschner, F. Schmidt-Kaler, R. Blatt, "Ion Strings for Quantum Gates," Appl. Phys. B 66, 603-608 (1998).
[CrossRef]

C. Monroe, D. M. Meekhof, B. E. King, S. R. Jeers, W. M. Itano, D. J. Wineland, P. Gould, "Resolved-Sideband Raman Cooling of a Bound Atom to the 3D Zero-Point Energy," Phys. Rev. Lett. 75, 4011-4014 (1995).
[CrossRef] [PubMed]

B. E. King, C. S. Wood, C. J. Myatt, Q. A. Turchette, D. Leibfried, W. M. Itano, C. Monroe, D. J. Wineland, "Initializing the Collective Motion of Trapped Ions for Quantum Logic," quant-ph/9803023. http://xxx.lanl.gov/abs/quant-ph/9803023

J. I. Cirac, P. Zoller, "Quantum Computations with Cold Trapped Ions," Phys. Rev. Lett. 74, 4091-4094 (1995).
[CrossRef] [PubMed]

D. F. V. James, "Quantum Dynamics of Cold Trapped Ions with Application to Quantum Computation," Appl. Phys. B 66 181-190 (1998).
[CrossRef]

A. Steane, "The Ion Trap Quantum Information Processor," Appl. Phys. B 64 623-642 (1997).
[CrossRef]

F. Diedrich, J. C. Berquist, W. M. Itano, D. J. Wineland, "Laser Cooling to the Zero-Point Energy of Motion," Phys. Rev. Lett. 62, 403-406 (1989).
[CrossRef] [PubMed]

I. Marzoli, J. I. Cirac, R. Blatt, P. Zoller, "Laser Cooling of Trapped Three-Level Ions: Designing Two-Level Systems for Sideband Cooling," Phys. Rev. A 49, 2771-2779 (1994).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: MOV (685 KB)     
» Media 2: MOV (736 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Figure 1.
Figure 1.

Normal modes: Frequencies and amplitudes for 5 ions. Note that in the upper part the amplitudes for the center of mass mode have been reduced to 30% for clarity.

Figure 2.
Figure 2.

Trap design. Inset: Ca+ level scheme.

Figure 3.
Figure 3.

Spot width on CCD camera as a function of rf frequency.

Figure 4.
Figure 4.

No excitation and strong excitation on the breathing mode (276.0 kHz) for 3 ions.

Figure 5.
Figure 5.

No excitation, slight and strong excitation of the center of mass mode (158.5 kHz), breathing mode (276.0 kHz) for 5 ions.

Figure 6.
Figure 6.

Quicktime video of the center of mass mode for seven ions (107 kHz).

Figure 7.
Figure 7.

Quicktime video of the breathing mode for seven ions (185 kHz).

Metrics