Abstract

A single-photon-sensitive intensified charge-coupled-device (ICCD) camera has been used to simultaneously detect, over a broad area, degenerate and nondegenerate photon pairs generated by the quantum-optical process of spontaneous parametric down-conversion. We have developed a new method for determining the quantum fourth-order correlations in spatially extended detection systems such as this one. Our technique reveals the expected phase-matching-induced spatial correlations in a 2-f Fourier-transform system.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. C. Burnham and D. L. Weinberg, "Observation of simultaneity in parametric production of optical photon pairs," Phys. Rev. Lett. 25, 84-87 (1970).
    [CrossRef]
  2. D. N. Klyshko, "Transverse photon bunching and two-photon processes in the field of parametrically scattered light," Zh. Eksp. Teor. Fiz. 83, 1313-1323 (1982) [Sov. Phys. JETP 56, 753-758 (1982)].
  3. A. Joobeur, B. E. A. Saleh, and M. C. Teich, "Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion," Phys. Rev. A 50, 3349-3361 (1994).
    [CrossRef] [PubMed]
  4. A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, "Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,"Phys. Rev. A 53, 4360-4371 (1996).
    [CrossRef] [PubMed]
  5. M. H. Rubin, "Transverse correlation in optical spontaneous parametric down-conversion," Phys. Rev. A 54, 5349-5360 (1996).
    [CrossRef] [PubMed]
  6. B. E. A. Saleh, A. Joobeur, and M. C. Teich, "Spatial effects in two- and four-beam interference of partially entangled biphotons," Phys. Rev. A (to appear, May 1998).
    [CrossRef]
  7. P. H. Souto Ribeiro, "Partial coherence with twin photons," Phys. Rev. A 56, 4111-4117 (1997).
    [CrossRef]
  8. J. Perina, Z. Hradil, and B. Jurco, Quantum Optics and Fundamentals of Physics, (Kluwer, Boston, 1994).
    [CrossRef]
  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge, New York, 1995), Ch. 22.
  10. A. A. Malygin, A. N. Penin, and A. V. Sergienko, "Spatiotemporal grouping of photons in spontaneous parametric scattering of light," Dokl. Akad. Nauk SSSR 281, 308-313 (1985) [Sov. Phys. Dokl. 30, 227-229 (1985)].
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (Wiley, New York, 1991), Ch. 16.
    [CrossRef]
  12. Princeton Instruments Catalog of High Performance Digital CCD Cameras: September, 1995, (Princeton Instruments, Inc., Trenton, NJ 08619). We used a slow scan model ICCD-576-G/RB-E detector with a third-generation intensifier for all experiments.
  13. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Ch. 4.
    [CrossRef]
  14. A. Gatti, L. A. Lugiato, G.-L. Oppo, R. Martin, P. Di Trapani, and A. Berzanskis, "From quantum to classical images," Opt. Express 1, 21-30 (1997). http://epubs.osa.org/oedocs/1968.pdf
    [CrossRef] [PubMed]
  15. D. N. Klyshko, Photons and Nonlinear Optics, (Gordon and Breach, New York, 1988), Ch. 6.
  16. A. V. Belinskii and D. N. Klyshko, "Two-photon optics: diraction, holography, and transformation of two-dimensional signals," Zh. Eksp. Teor. Fiz. 105, 487-493 (1994) [JETP 78, 259-262 (1994)].
  17. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, "Observation of two-photon `ghost' interference and diraction," Phys. Rev. Lett. 74, 3600-3603 (1995).
    [CrossRef] [PubMed]
  18. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-R3432 (1995).
    [CrossRef] [PubMed]
  19. T. B. Pittman, A. V. Sergienko, D. V. Strekalov, Y. H. Shih, M. H. Rubin and D. N. Klyshko, "Two-photon geometric optics," Phys. Rev. A 53, 2804-2815 (1996).
    [CrossRef] [PubMed]
  20. P. H. Souto Ribeiro and G. A. Barbosa, "Direct and ghost interference in double-slit experiments with coincidence measurements," Phys. Rev. A 54, 3489-3492 (1996).
    [CrossRef] [PubMed]
  21. B. E. A. Saleh, S. Popescu, and M. C. Teich, "Generalized entangled-photon imaging," in Proceedings of the IEEE LEOS 1996 Annual Meeting (Boston, MA, 1996), pp. 362-363.

Other

D. C. Burnham and D. L. Weinberg, "Observation of simultaneity in parametric production of optical photon pairs," Phys. Rev. Lett. 25, 84-87 (1970).
[CrossRef]

D. N. Klyshko, "Transverse photon bunching and two-photon processes in the field of parametrically scattered light," Zh. Eksp. Teor. Fiz. 83, 1313-1323 (1982) [Sov. Phys. JETP 56, 753-758 (1982)].

A. Joobeur, B. E. A. Saleh, and M. C. Teich, "Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion," Phys. Rev. A 50, 3349-3361 (1994).
[CrossRef] [PubMed]

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, "Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,"Phys. Rev. A 53, 4360-4371 (1996).
[CrossRef] [PubMed]

M. H. Rubin, "Transverse correlation in optical spontaneous parametric down-conversion," Phys. Rev. A 54, 5349-5360 (1996).
[CrossRef] [PubMed]

B. E. A. Saleh, A. Joobeur, and M. C. Teich, "Spatial effects in two- and four-beam interference of partially entangled biphotons," Phys. Rev. A (to appear, May 1998).
[CrossRef]

P. H. Souto Ribeiro, "Partial coherence with twin photons," Phys. Rev. A 56, 4111-4117 (1997).
[CrossRef]

J. Perina, Z. Hradil, and B. Jurco, Quantum Optics and Fundamentals of Physics, (Kluwer, Boston, 1994).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge, New York, 1995), Ch. 22.

A. A. Malygin, A. N. Penin, and A. V. Sergienko, "Spatiotemporal grouping of photons in spontaneous parametric scattering of light," Dokl. Akad. Nauk SSSR 281, 308-313 (1985) [Sov. Phys. Dokl. 30, 227-229 (1985)].

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (Wiley, New York, 1991), Ch. 16.
[CrossRef]

Princeton Instruments Catalog of High Performance Digital CCD Cameras: September, 1995, (Princeton Instruments, Inc., Trenton, NJ 08619). We used a slow scan model ICCD-576-G/RB-E detector with a third-generation intensifier for all experiments.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Ch. 4.
[CrossRef]

A. Gatti, L. A. Lugiato, G.-L. Oppo, R. Martin, P. Di Trapani, and A. Berzanskis, "From quantum to classical images," Opt. Express 1, 21-30 (1997). http://epubs.osa.org/oedocs/1968.pdf
[CrossRef] [PubMed]

D. N. Klyshko, Photons and Nonlinear Optics, (Gordon and Breach, New York, 1988), Ch. 6.

A. V. Belinskii and D. N. Klyshko, "Two-photon optics: diraction, holography, and transformation of two-dimensional signals," Zh. Eksp. Teor. Fiz. 105, 487-493 (1994) [JETP 78, 259-262 (1994)].

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, "Observation of two-photon `ghost' interference and diraction," Phys. Rev. Lett. 74, 3600-3603 (1995).
[CrossRef] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-R3432 (1995).
[CrossRef] [PubMed]

T. B. Pittman, A. V. Sergienko, D. V. Strekalov, Y. H. Shih, M. H. Rubin and D. N. Klyshko, "Two-photon geometric optics," Phys. Rev. A 53, 2804-2815 (1996).
[CrossRef] [PubMed]

P. H. Souto Ribeiro and G. A. Barbosa, "Direct and ghost interference in double-slit experiments with coincidence measurements," Phys. Rev. A 54, 3489-3492 (1996).
[CrossRef] [PubMed]

B. E. A. Saleh, S. Popescu, and M. C. Teich, "Generalized entangled-photon imaging," in Proceedings of the IEEE LEOS 1996 Annual Meeting (Boston, MA, 1996), pp. 362-363.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Figure 1.
Figure 1.

The main components of an ICCD camera showing the photocathode front surface, microchannel-plate amplifier, fiber bundle, and CCD wafer package [12].

Figure 2.
Figure 2.

Illustration of the basic spontaneous parametric down-conversion optical system.

Figure 3.
Figure 3.

Contrast-adjusted negative pictures obtained from (a) a 4-f one-to-one imaging system (4-μs exposure time) and (b) a 2-f angle-to-position optical system (100-μs exposure time). In addition to the features sought, there is a spatially random background-noise distribution.

Figure 4.
Figure 4.

Illustration of the spatial relationship between the signal and idler photons in a 2-f angle-to-position optical system. The signal and idler photon-detection points are specified by their radii rs,i and angles ϕs,i . In practice, an area of locations Ae is possible for the idler because of uncertainty in the radius δr and the angle δϕ.

Figure 5.
Figure 5.

Theoretical continuous-plane-wave pump phase-matching as a function of signal and idler radii (in ICCD camera pixels measured from the center of the rings) for a BBO crystal with cut angles θc = 36.2°, ϕc = 90°; tilted 1° with respect to the optic axis; and with a 325-nm pump wavelength. Results are shown for ideally pumped down-conversion to wavelengths in the range 600–700 nm for an infinitely long crystal (dashed curve) and for a 1-mm long crystal (solid curves defining a boundary within which pairs can be phase-matched).

Figure 6.
Figure 6.

Illustration of the mapping and correlation analysis scheme with the 2-f optical system. A pair of x’s mark examples of diametrically opposed patches with the same radii.

Figure 7.
Figure 7.

Experimental spatial correlation (color plot) as a function of the signal and idler radii (1 pixel corresponds to an angular spread ≈ 0.021° in the radial direction) obtained from an analysis of 150 images taken with a 2-f system. The radii begin at slightly less than the minimum detected down-conversion radius and extend slightly beyond the maximum detected down-conversion radius as they appear in Fig. 3(b). Two ideal theoretical phase-matching curves for type-I BBO with a cut angle ϕc = 90° and a 325-nm pump beam incident on the crystal at an angle of 1° are provided: the θc = 36.2° result as in Fig. 5 (dashed curve) and a fit with θc = 36.7° and a -2° shift in the down-conversion angles (solid curve).

Metrics