Abstract

We report on our recent experiments on nonlinear switching in fibre Bragg gratings. Using an all-fibre source we show an increase in transmission of a FBG from 4% to 40% at high powers. This switching is associated with the formation of gap solitons inside the grating. We also demonstrate an all-optical AND gate using polarization coupled gap solitons and the optical pushbroom.

© 1998 Optical Society of America

Full Article  |  PDF Article
Related Articles
Nonlinear switching in a 20-cm-long fiber Bragg grating

N. G. R. Broderick, D. J. Richardson, and M. Ibsen
Opt. Lett. 25(8) 536-538 (2000)

All-optical and gate based on coupled gap-soliton formation in a fiber Bragg grating

D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming
Opt. Lett. 23(4) 259-261 (1998)

Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating

D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen
Opt. Lett. 23(5) 328-330 (1998)

References

  • View by:
  • |
  • |
  • |

  1. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
    [Crossref]
  2. D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming “Nonlinear Self-Switching and Multiple Gap Soliton Formation in a Fibre Bragg Grating” Opt. Lett. 23, 328–330, (1998).
    [Crossref]
  3. D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming “ All-Optical ‘AND’ Gate based on coupled Gap soliton formation in a Fibre Bragg Grating” Opt. Lett. 23, 259–261 (1998).
    [Crossref]
  4. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566, (1997).
    [Crossref]
  5. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
    [Crossref] [PubMed]
  6. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627 (1996).
    [Crossref] [PubMed]
  7. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37 (1989).
    [Crossref]
  8. C. M. de Sterke and J. E. Sipe, in Progress in Optics, E. Wolf, ed., (North Holland, Amsterdam, 1994), Vol. XXXIII, Chap. III Gap Solitons, pp. 203–260.
  9. C. M. de Sterke “Optical push broom” Opt. Lett. 17, 914–916 (1992).
    [Crossref] [PubMed]
  10. D. Taverner, D. J. Richardson, L. Dong, J. E Caplen, K . Williams, and R. V. Penty, “158 μJ pulses from a single transverse mode, large mode-area EDFA,” Opt. Lett. 22, 378–380 (1997).
    [Crossref] [PubMed]
  11. S. Lee and S.-T. Ho, “Optical switching scheme based on the transmission of coupled gap solitons in a nonlinear periodic dielectric media,” Opt. Lett. 18, 962–964 (1993).
    [Crossref] [PubMed]
  12. W. Samir, S. J. Garth, and C. Pask, “Interplay of grating and nonlinearity in mode coupling,” J. Opt. Soc. Am. B 11, 64–71 (1994).
    [Crossref]
  13. S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-Optical Switching of Grating Transmission using Cross-Phase Modulation in optical fibres,” Elect. Lett. 26, 1459–1460 (1990).
    [Crossref]
  14. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming “Experimental Observation of nonlinear pulse compression in nonuniform Bragg gratings” Opt. Lett. 22, 1837–1839 (1997).
    [Crossref]

1998 (2)

1997 (3)

1996 (1)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

1994 (1)

1993 (1)

1992 (1)

1990 (1)

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-Optical Switching of Grating Transmission using Cross-Phase Modulation in optical fibres,” Elect. Lett. 26, 1459–1460 (1990).
[Crossref]

1989 (1)

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37 (1989).
[Crossref]

1987 (1)

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

1979 (1)

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Aceves, A. B.

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37 (1989).
[Crossref]

Broderick, N. G. R.

Caplen, J. E

Chen, W.

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

de Sterke, C. M.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

C. M. de Sterke “Optical push broom” Opt. Lett. 17, 914–916 (1992).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, in Progress in Optics, E. Wolf, ed., (North Holland, Amsterdam, 1994), Vol. XXXIII, Chap. III Gap Solitons, pp. 203–260.

Dong, L.

Eggleton, B. J.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

Garmire, E.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Garth, S. J.

Hibino, Y.

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-Optical Switching of Grating Transmission using Cross-Phase Modulation in optical fibres,” Elect. Lett. 26, 1459–1460 (1990).
[Crossref]

Ho, S.-T.

Ibsen, M.

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

Laming, R. I.

LaRochelle, S.

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-Optical Switching of Grating Transmission using Cross-Phase Modulation in optical fibres,” Elect. Lett. 26, 1459–1460 (1990).
[Crossref]

Lee, S.

Marburger, J. H.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Mills, D. L.

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

Mizrahi, V.

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-Optical Switching of Grating Transmission using Cross-Phase Modulation in optical fibres,” Elect. Lett. 26, 1459–1460 (1990).
[Crossref]

Pask, C.

Penty, R. V.

Richardson, D. J.

Samir, W.

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, in Progress in Optics, E. Wolf, ed., (North Holland, Amsterdam, 1994), Vol. XXXIII, Chap. III Gap Solitons, pp. 203–260.

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

Stegeman, G. I.

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-Optical Switching of Grating Transmission using Cross-Phase Modulation in optical fibres,” Elect. Lett. 26, 1459–1460 (1990).
[Crossref]

Taverner, D.

Wabnitz, S.

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37 (1989).
[Crossref]

Williams, K .

Winful, H. G.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Appl. Phys. Lett. (1)

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Elect. Lett. (1)

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-Optical Switching of Grating Transmission using Cross-Phase Modulation in optical fibres,” Elect. Lett. 26, 1459–1460 (1990).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (6)

Phys. Lett. A (1)

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37 (1989).
[Crossref]

Phys. Rev. Lett. (3)

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566, (1997).
[Crossref]

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627 (1996).
[Crossref] [PubMed]

Other (1)

C. M. de Sterke and J. E. Sipe, in Progress in Optics, E. Wolf, ed., (North Holland, Amsterdam, 1994), Vol. XXXIII, Chap. III Gap Solitons, pp. 203–260.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. PBS: Polarisation beam splitter.

Fig. 2a.
Fig. 2a.

Reflection Spectrum of the Bragg Grating used in the experiments. The solid line is the measured spectrum and the dashed line is the theoretical model. (b) Input pulse profile. setup.

Fig. 3a.
Fig. 3a.

Self-Switching of a Bragg grating. Note that the transmission increases from 2% in the linear regime to over 40% at high peak powers. Fig. (b) shows the output pulse shape for a range of increasing peak powers.

Fig. 4a.
Fig. 4a.

Power dependence of the AND gate; note the sharp threshold near 2.5 kW. Fig. (b) shows the separate (dashed line) and combined (solid line) output trace for an input peak power of 3 kW.

Fig. 5a.
Fig. 5a.

Numerical Simulation of the optical pushbroom. The solid line is the probe intensity while the dashed line shows the pump intensity of a different vertical scale. The insert shows an expanded view of the front peak. Fig. (b) shows the actual experimental results highlighting the agreement with the numerical model.

Metrics