Abstract

We study out-of-plane coupling and switching in a semiconductor periodic waveguide structure, with attention given to both dispersion within the structure and impedence matching of an external wave with a guided mode. We show nanosecond-scale optical switching and discuss the implications for Bragg soliton excitation.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. G. Winful et al., "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379 (1979).
    [CrossRef]
  2. H. G. Winful and G. I. Stegeman, "Applications of nonlinear periodic structures in guided wave optics," Proc. SPIE 517, 214 (1984).
  3. J. E. Sipe and H. G. Winful, "Nonlinear Schrodinger solitons in a periodic structure," Opt. Lett. 13, 132 (1988).
    [CrossRef] [PubMed]
  4. H. G. Winful and C. D. Cooperman, "Self-pulsing and chaos in distributed feedback bistable optical devices," Appl. Phys. Lett. 40, 298 (1982).
    [CrossRef]
  5. W. Chen and D. L. Mills, "Gap solitons and the nonlinear optical response of superlattices," Phys. Rev. Lett. 58, 160 (1987).
    [CrossRef] [PubMed]
  6. D. L. Mills and S. E. Trullinger, "Gap solitons in nonlinear periodic structures," Phys. Rev. B 36, 947 (1987).
    [CrossRef]
  7. C. M. de Sterke and J. E. Sipe, "Envelope-function approach for the electrodynamics of nonlinear periodic structures," Phys. Rev. A, 38, 5149 (1988).
    [CrossRef] [PubMed]
  8. C. M. de Sterke and J. E. Sipe, "Coupled modes and the nonlinear Schrodinger equation," Phys. Rev. A 42, 550 (1990).
    [CrossRef]
  9. C. M. de Sterke and J. E. Sipe, "Switching dynamics of finite periodic nonlinear media: a numerical study," Phys. Rev. A 42, 2858 (1990).
    [CrossRef] [PubMed]
  10. N. D. Sankey et. al., "All-optical switching in a nonlinear periodic waveguide structure," Appl. Phys. Lett. 60, 1427 (1992).
    [CrossRef]
  11. N. D. Sankey et al., "Optical switching dynamics of the nonlinear Bragg reflector: comparison of theory and experiment," J. Appl. Phys. 73, 1 (1993).
    [CrossRef]
  12. M. S. Malcuit and C. J. Herbert, "Optical properties of nonlinear periodic structures," Acta Physica Polonica A 86, 127 (1994).
  13. J. He and M. Cada, "Optical bistability in semiconductor periodic structures," J. Quantum Electron. 27, 1182 (1991).
    [CrossRef]
  14. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe "Bragg grating solitons," Phys. Rev. Lett. 76, 627 (1996).
  15. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen and R. I. Laming, "Experimental Observation of nonlinear pulse compression in nonuniform Bragg gratings," Opt. Lett. 22, 1837 (1997).
    [CrossRef]
  16. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Modulational instability and tunable multiple soliton generation in apodized fiber gratings," Opt. Commun. 149, 267 (1998).
    [CrossRef]
  17. Amy E. Bieber et al., "Optical Switching in a metal-semiconductor-metal waveguide structure," Appl. Phys. Lett. 66, 3401 (1995).
    [CrossRef]
  18. Amy E. Bieber and T. G. Brown, "Integral coupler-resonator for silicon-based switching and modulation," Appl. Phys. Lett. 71, 861 (1995).
    [CrossRef]
  19. S. Peng and G. M. Morris, "Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings." J. Opt. Soc. Am. A 12, 1087 (1995).
    [CrossRef]

Other (19)

H. G. Winful et al., "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

H. G. Winful and G. I. Stegeman, "Applications of nonlinear periodic structures in guided wave optics," Proc. SPIE 517, 214 (1984).

J. E. Sipe and H. G. Winful, "Nonlinear Schrodinger solitons in a periodic structure," Opt. Lett. 13, 132 (1988).
[CrossRef] [PubMed]

H. G. Winful and C. D. Cooperman, "Self-pulsing and chaos in distributed feedback bistable optical devices," Appl. Phys. Lett. 40, 298 (1982).
[CrossRef]

W. Chen and D. L. Mills, "Gap solitons and the nonlinear optical response of superlattices," Phys. Rev. Lett. 58, 160 (1987).
[CrossRef] [PubMed]

D. L. Mills and S. E. Trullinger, "Gap solitons in nonlinear periodic structures," Phys. Rev. B 36, 947 (1987).
[CrossRef]

C. M. de Sterke and J. E. Sipe, "Envelope-function approach for the electrodynamics of nonlinear periodic structures," Phys. Rev. A, 38, 5149 (1988).
[CrossRef] [PubMed]

C. M. de Sterke and J. E. Sipe, "Coupled modes and the nonlinear Schrodinger equation," Phys. Rev. A 42, 550 (1990).
[CrossRef]

C. M. de Sterke and J. E. Sipe, "Switching dynamics of finite periodic nonlinear media: a numerical study," Phys. Rev. A 42, 2858 (1990).
[CrossRef] [PubMed]

N. D. Sankey et. al., "All-optical switching in a nonlinear periodic waveguide structure," Appl. Phys. Lett. 60, 1427 (1992).
[CrossRef]

N. D. Sankey et al., "Optical switching dynamics of the nonlinear Bragg reflector: comparison of theory and experiment," J. Appl. Phys. 73, 1 (1993).
[CrossRef]

M. S. Malcuit and C. J. Herbert, "Optical properties of nonlinear periodic structures," Acta Physica Polonica A 86, 127 (1994).

J. He and M. Cada, "Optical bistability in semiconductor periodic structures," J. Quantum Electron. 27, 1182 (1991).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe "Bragg grating solitons," Phys. Rev. Lett. 76, 627 (1996).

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen and R. I. Laming, "Experimental Observation of nonlinear pulse compression in nonuniform Bragg gratings," Opt. Lett. 22, 1837 (1997).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Modulational instability and tunable multiple soliton generation in apodized fiber gratings," Opt. Commun. 149, 267 (1998).
[CrossRef]

Amy E. Bieber et al., "Optical Switching in a metal-semiconductor-metal waveguide structure," Appl. Phys. Lett. 66, 3401 (1995).
[CrossRef]

Amy E. Bieber and T. G. Brown, "Integral coupler-resonator for silicon-based switching and modulation," Appl. Phys. Lett. 71, 861 (1995).
[CrossRef]

S. Peng and G. M. Morris, "Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings." J. Opt. Soc. Am. A 12, 1087 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the periodic structures investigated. The thicknesses t1 and t2 are optimized for each design.

Fig. 2.
Fig. 2.

a) Reflectance spectrum for a structure designed for fourth-order coupling and second-order Bragg reflection. (t1 = 120 nm, t2 = 62 nm) b) The calculated dispersion relation.

Fig. 3
Fig. 3

Reflected pulse (red/solid) for a structure optimized for λ=1064 nm at a 2.3° angle of incidence. The dashed/blue line shows the shape of the incident Nd:YAG pulse.

Fig. 4
Fig. 4

Experimental apparatus for reflectance measurement near λ=1550 nm.

Fig. 5
Fig. 5

Measured reflectance spectrum of a structure optimized for λ=1550 nm at normal incidence. (t1 = 180 nm, t2 = 90 nm) Red trace: Experimental Results. Blue/Dashed: predicted reflectance.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N κ L Δ n N L 30

Metrics