Abstract

We propose a high-repetition-rate soliton-train source based on adiabatic compression of a dual-frequency optical signal in nonuniform fiber Bragg gratings. As the signal propagates through the grating, it is reshaped into a train of Bragg solitons whose repetition rate is predetermined by the frequency of initial sinusoidal modulation. We develop an approximate analytical model to predict the width of compressed soliton-like pulses and to provide conditions for adiabatic compression. We demonstrate numerically the formation of a 40-GHz train of 2.6-ps pulses and find that the numerical results are in good agreement with the predictions of our analytical model. The scheme relies on the dispersion provided by the grating, which can be up to six orders of magnitude larger than of fiber and makes it possible to reduce the fiber length significantly.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Veselka and S. K. Korotky, “Pulse generation for soliton systems using lithium niobate modulators,” IEEE J. Sel. Top. Quantum Electron. 2, 300–310 (1996).
    [Crossref]
  2. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984).
    [Crossref] [PubMed]
  3. K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49, 236–238 (1986).
    [Crossref]
  4. E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, “Generation of a train of fundamental solitons at a high repetition rate in optical fibers,” Opt. Lett. 14, 1008–1010 (1989).
    [Crossref] [PubMed]
  5. V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
    [Crossref]
  6. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
    [Crossref]
  7. S.V. Chernikov, D.J. Richardson, R.I. Laming, E.M. Dianov, and D.N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550nm,” Electron. Lett. 28, 1210–1212 (1992).
    [Crossref]
  8. M. Romagnoli, S. Trillo, and S. Wabnitz, “Soliton switching in nonlinear couplers,” Optical and Quantum Electon. 24, S1237–S1267 (1992).
    [Crossref]
  9. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
    [Crossref] [PubMed]
  10. E. A. Swanson and S. R. Chinn, “23-GHz and 123-GHz soliton pulse generation using two cw lasers and standard single-mode fiber,” IEEE Photon. Technol. Lett. 6, 796–799 (1994).
    [Crossref]
  11. N. Akhmediev and A. Ankiewicz, “Generation of a train of solitons with arbitrary phase difference between neighboring solitons,” Opt. Lett. 19, 545–547 (1994).
    [Crossref] [PubMed]
  12. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhozi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
    [Crossref]
  13. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criterion for nearly ideal pulse compression,” J. Lightwave Technol. 15, 1303–1313 (1997).
    [Crossref]
  14. G. Lenz and B. J. Eggleton, “Adiabatic Bragg soliton compression in nonuniform grating structures,” J. Opt. Soc. Am. B, in press.
  15. A. Asseh, H. Storay, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
    [Crossref]
  16. L. Dong, M. J. Cole, M. Durkin, M. Ibsen, and R. I. Laming, “40Gbit/s 1.55um transmission over 109km of non-dispersion-shifted fiber with long continuously chirped fiber gratings,” in 1996Opt. Fiber Commun. Conf. (OFC'96), postdeadline paper PD6.
  17. R. E. Slusher, B. J. Eggleton, C. M. de Sterke, and T. A. Strasser, “Nonlinear pulse reflections from chirped fiber gratings,” Opt. Express 3, (1998). http://epubs.osa.org/oearchive/source/6996.htm
    [Crossref] [PubMed]
  18. C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, ed. by E. Wolf (North-Holand, Amsterdam, 1994), pp. 203-260.
  19. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
    [Crossref]
  20. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
    [Crossref] [PubMed]
  21. D. Taverner, N.G.R. Broderick, D.T. Richardson, R.I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 328–330 (1998).
    [Crossref]
  22. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Bragg solitons in the nonlinear Schrödinger limit: theory and experiment,” submitted to J. Opt. Soc. Am. B (1998).
  23. C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
    [Crossref]
  24. C. M. de Sterke and B. J. Eggleton, “Bragg solitons and the nonlinear Schrödinger equation,” Phys. Rev. E., in press.
  25. B. J. Eggleton, C. M. de Sterke, A. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
    [Crossref]
  26. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, New York, 1995).
  27. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8, 596–598 (1983).
    [Crossref] [PubMed]
  28. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
    [Crossref]

1998 (3)

R. E. Slusher, B. J. Eggleton, C. M. de Sterke, and T. A. Strasser, “Nonlinear pulse reflections from chirped fiber gratings,” Opt. Express 3, (1998). http://epubs.osa.org/oearchive/source/6996.htm
[Crossref] [PubMed]

B. J. Eggleton, C. M. de Sterke, A. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[Crossref]

D. Taverner, N.G.R. Broderick, D.T. Richardson, R.I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 328–330 (1998).
[Crossref]

1997 (3)

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[Crossref]

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criterion for nearly ideal pulse compression,” J. Lightwave Technol. 15, 1303–1313 (1997).
[Crossref]

A. Asseh, H. Storay, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

1996 (3)

J. J. Veselka and S. K. Korotky, “Pulse generation for soliton systems using lithium niobate modulators,” IEEE J. Sel. Top. Quantum Electron. 2, 300–310 (1996).
[Crossref]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhozi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

1994 (3)

1992 (2)

S.V. Chernikov, D.J. Richardson, R.I. Laming, E.M. Dianov, and D.N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550nm,” Electron. Lett. 28, 1210–1212 (1992).
[Crossref]

M. Romagnoli, S. Trillo, and S. Wabnitz, “Soliton switching in nonlinear couplers,” Optical and Quantum Electon. 24, S1237–S1267 (1992).
[Crossref]

1991 (2)

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
[Crossref]

1990 (1)

C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[Crossref]

1989 (2)

1986 (1)

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49, 236–238 (1986).
[Crossref]

1984 (1)

1983 (1)

Aceves, A.

B. J. Eggleton, C. M. de Sterke, A. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[Crossref]

Aceves, A. B.

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic, New York, 1995).

Akhmediev, N.

Ankiewicz, A.

Asobe, M.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[Crossref]

Asseh, A.

A. Asseh, H. Storay, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

Bogatyrev, V. A.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Broderick, N.G.R.

Brodzeli, Z.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhozi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

Bubnov, M. M.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Chernikov, S. V.

S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19, 539–541 (1994).
[Crossref] [PubMed]

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
[Crossref]

E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, “Generation of a train of fundamental solitons at a high repetition rate in optical fibers,” Opt. Lett. 14, 1008–1010 (1989).
[Crossref] [PubMed]

Chernikov, S.V.

S.V. Chernikov, D.J. Richardson, R.I. Laming, E.M. Dianov, and D.N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550nm,” Electron. Lett. 28, 1210–1212 (1992).
[Crossref]

Chinn, S. R.

E. A. Swanson and S. R. Chinn, “23-GHz and 123-GHz soliton pulse generation using two cw lasers and standard single-mode fiber,” IEEE Photon. Technol. Lett. 6, 796–799 (1994).
[Crossref]

Cole, M. J.

L. Dong, M. J. Cole, M. Durkin, M. Ibsen, and R. I. Laming, “40Gbit/s 1.55um transmission over 109km of non-dispersion-shifted fiber with long continuously chirped fiber gratings,” in 1996Opt. Fiber Commun. Conf. (OFC'96), postdeadline paper PD6.

de Sterke, C. M.

R. E. Slusher, B. J. Eggleton, C. M. de Sterke, and T. A. Strasser, “Nonlinear pulse reflections from chirped fiber gratings,” Opt. Express 3, (1998). http://epubs.osa.org/oearchive/source/6996.htm
[Crossref] [PubMed]

B. J. Eggleton, C. M. de Sterke, A. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[Crossref]

C. M. de Sterke and B. J. Eggleton, “Bragg solitons and the nonlinear Schrödinger equation,” Phys. Rev. E., in press.

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Bragg solitons in the nonlinear Schrödinger limit: theory and experiment,” submitted to J. Opt. Soc. Am. B (1998).

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, ed. by E. Wolf (North-Holand, Amsterdam, 1994), pp. 203-260.

Devyatykh, G. G.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Dhozi, G.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhozi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

Dianov, E. M.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
[Crossref]

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, “Generation of a train of fundamental solitons at a high repetition rate in optical fibers,” Opt. Lett. 14, 1008–1010 (1989).
[Crossref] [PubMed]

Dianov, E.M.

S.V. Chernikov, D.J. Richardson, R.I. Laming, E.M. Dianov, and D.N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550nm,” Electron. Lett. 28, 1210–1212 (1992).
[Crossref]

Dong, L.

L. Dong, M. J. Cole, M. Durkin, M. Ibsen, and R. I. Laming, “40Gbit/s 1.55um transmission over 109km of non-dispersion-shifted fiber with long continuously chirped fiber gratings,” in 1996Opt. Fiber Commun. Conf. (OFC'96), postdeadline paper PD6.

Durkin, M.

L. Dong, M. J. Cole, M. Durkin, M. Ibsen, and R. I. Laming, “40Gbit/s 1.55um transmission over 109km of non-dispersion-shifted fiber with long continuously chirped fiber gratings,” in 1996Opt. Fiber Commun. Conf. (OFC'96), postdeadline paper PD6.

Eggleton, B. J.

R. E. Slusher, B. J. Eggleton, C. M. de Sterke, and T. A. Strasser, “Nonlinear pulse reflections from chirped fiber gratings,” Opt. Express 3, (1998). http://epubs.osa.org/oearchive/source/6996.htm
[Crossref] [PubMed]

B. J. Eggleton, C. M. de Sterke, A. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[Crossref]

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criterion for nearly ideal pulse compression,” J. Lightwave Technol. 15, 1303–1313 (1997).
[Crossref]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhozi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Bragg solitons in the nonlinear Schrödinger limit: theory and experiment,” submitted to J. Opt. Soc. Am. B (1998).

C. M. de Sterke and B. J. Eggleton, “Bragg solitons and the nonlinear Schrödinger equation,” Phys. Rev. E., in press.

G. Lenz and B. J. Eggleton, “Adiabatic Bragg soliton compression in nonuniform grating structures,” J. Opt. Soc. Am. B, in press.

Gordon, J. P.

Gur’yanov, A. N.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Hasegawa, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49, 236–238 (1986).
[Crossref]

A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984).
[Crossref] [PubMed]

Ibsen, M.

D. Taverner, N.G.R. Broderick, D.T. Richardson, R.I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 328–330 (1998).
[Crossref]

L. Dong, M. J. Cole, M. Durkin, M. Ibsen, and R. I. Laming, “40Gbit/s 1.55um transmission over 109km of non-dispersion-shifted fiber with long continuously chirped fiber gratings,” in 1996Opt. Fiber Commun. Conf. (OFC'96), postdeadline paper PD6.

Jewell, J. L.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49, 236–238 (1986).
[Crossref]

Kashyap, R.

Korotky, S. K.

J. J. Veselka and S. K. Korotky, “Pulse generation for soliton systems using lithium niobate modulators,” IEEE J. Sel. Top. Quantum Electron. 2, 300–310 (1996).
[Crossref]

Krug, P. A.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhozi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

Kurkov, A. S.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Laming, R. I.

L. Dong, M. J. Cole, M. Durkin, M. Ibsen, and R. I. Laming, “40Gbit/s 1.55um transmission over 109km of non-dispersion-shifted fiber with long continuously chirped fiber gratings,” in 1996Opt. Fiber Commun. Conf. (OFC'96), postdeadline paper PD6.

Laming, R.I.

D. Taverner, N.G.R. Broderick, D.T. Richardson, R.I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 328–330 (1998).
[Crossref]

S.V. Chernikov, D.J. Richardson, R.I. Laming, E.M. Dianov, and D.N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550nm,” Electron. Lett. 28, 1210–1212 (1992).
[Crossref]

Lenz, G.

G. Lenz and B. J. Eggleton, “Adiabatic Bragg soliton compression in nonuniform grating structures,” J. Opt. Soc. Am. B, in press.

Litchinitser, N. M.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criterion for nearly ideal pulse compression,” J. Lightwave Technol. 15, 1303–1313 (1997).
[Crossref]

Mamyshev, P. V.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
[Crossref]

E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, “Generation of a train of fundamental solitons at a high repetition rate in optical fibers,” Opt. Lett. 14, 1008–1010 (1989).
[Crossref] [PubMed]

Miroshnichenko, S. I.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Ouellette, F.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhozi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

Patterson, D. B.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criterion for nearly ideal pulse compression,” J. Lightwave Technol. 15, 1303–1313 (1997).
[Crossref]

Payne, D.N.

S.V. Chernikov, D.J. Richardson, R.I. Laming, E.M. Dianov, and D.N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550nm,” Electron. Lett. 28, 1210–1212 (1992).
[Crossref]

Prokhorov, A. M.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, “Generation of a train of fundamental solitons at a high repetition rate in optical fibers,” Opt. Lett. 14, 1008–1010 (1989).
[Crossref] [PubMed]

Richardson, D.J.

S.V. Chernikov, D.J. Richardson, R.I. Laming, E.M. Dianov, and D.N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550nm,” Electron. Lett. 28, 1210–1212 (1992).
[Crossref]

Richardson, D.T.

Romagnoli, M.

M. Romagnoli, S. Trillo, and S. Wabnitz, “Soliton switching in nonlinear couplers,” Optical and Quantum Electon. 24, S1237–S1267 (1992).
[Crossref]

Rumyantsev, S. D.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Sahlgren, B. E.

A. Asseh, H. Storay, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

Sandgren, S.

A. Asseh, H. Storay, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

Semenov, S. L.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Semenov, V. A.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Sipe, J. E.

B. J. Eggleton, C. M. de Sterke, A. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[Crossref]

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, ed. by E. Wolf (North-Holand, Amsterdam, 1994), pp. 203-260.

Slusher, R. E.

R. E. Slusher, B. J. Eggleton, C. M. de Sterke, and T. A. Strasser, “Nonlinear pulse reflections from chirped fiber gratings,” Opt. Express 3, (1998). http://epubs.osa.org/oearchive/source/6996.htm
[Crossref] [PubMed]

B. J. Eggleton, C. M. de Sterke, A. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Bragg solitons in the nonlinear Schrödinger limit: theory and experiment,” submitted to J. Opt. Soc. Am. B (1998).

Stephens, T.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhozi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

Storay, H.

A. Asseh, H. Storay, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

Strasser, T. A.

R. E. Slusher, B. J. Eggleton, C. M. de Sterke, and T. A. Strasser, “Nonlinear pulse reflections from chirped fiber gratings,” Opt. Express 3, (1998). http://epubs.osa.org/oearchive/source/6996.htm
[Crossref] [PubMed]

B. J. Eggleton, C. M. de Sterke, A. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[Crossref]

Stubbe, R. A. H.

A. Asseh, H. Storay, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

Swanson, E. A.

E. A. Swanson and S. R. Chinn, “23-GHz and 123-GHz soliton pulse generation using two cw lasers and standard single-mode fiber,” IEEE Photon. Technol. Lett. 6, 796–799 (1994).
[Crossref]

Sysoliatin, A. A.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Tai, K.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49, 236–238 (1986).
[Crossref]

Taverner, D.

Taylor, J. R.

Tomita, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49, 236–238 (1986).
[Crossref]

Trillo, S.

M. Romagnoli, S. Trillo, and S. Wabnitz, “Soliton switching in nonlinear couplers,” Optical and Quantum Electon. 24, S1237–S1267 (1992).
[Crossref]

Veselka, J. J.

J. J. Veselka and S. K. Korotky, “Pulse generation for soliton systems using lithium niobate modulators,” IEEE J. Sel. Top. Quantum Electron. 2, 300–310 (1996).
[Crossref]

Wabnitz, S.

M. Romagnoli, S. Trillo, and S. Wabnitz, “Soliton switching in nonlinear couplers,” Optical and Quantum Electon. 24, S1237–S1267 (1992).
[Crossref]

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
[Crossref]

Appl. Phys. Lett. (1)

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49, 236–238 (1986).
[Crossref]

Electron. Lett. (2)

S.V. Chernikov, D.J. Richardson, R.I. Laming, E.M. Dianov, and D.N. Payne, “70 Gbit/s fiber based source of fundamental solitons at 1550nm,” Electron. Lett. 28, 1210–1212 (1992).
[Crossref]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhozi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. J. Veselka and S. K. Korotky, “Pulse generation for soliton systems using lithium niobate modulators,” IEEE J. Sel. Top. Quantum Electron. 2, 300–310 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

E. A. Swanson and S. R. Chinn, “23-GHz and 123-GHz soliton pulse generation using two cw lasers and standard single-mode fiber,” IEEE Photon. Technol. Lett. 6, 796–799 (1994).
[Crossref]

J. Lightwave Technol. (3)

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criterion for nearly ideal pulse compression,” J. Lightwave Technol. 15, 1303–1313 (1997).
[Crossref]

A. Asseh, H. Storay, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15, 1419–1423 (1997).
[Crossref]

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991).
[Crossref]

Opt. Commun. (1)

B. J. Eggleton, C. M. de Sterke, A. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998).
[Crossref]

Opt. Express (1)

R. E. Slusher, B. J. Eggleton, C. M. de Sterke, and T. A. Strasser, “Nonlinear pulse reflections from chirped fiber gratings,” Opt. Express 3, (1998). http://epubs.osa.org/oearchive/source/6996.htm
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[Crossref]

Opt. Lett. (6)

Optical and Quantum Electon. (1)

M. Romagnoli, S. Trillo, and S. Wabnitz, “Soliton switching in nonlinear couplers,” Optical and Quantum Electon. 24, S1237–S1267 (1992).
[Crossref]

Phys. Lett. A (1)

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
[Crossref]

Phys. Rev. A (1)

C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[Crossref]

Phys. Rev. E. (1)

C. M. de Sterke and B. J. Eggleton, “Bragg solitons and the nonlinear Schrödinger equation,” Phys. Rev. E., in press.

Phys. Rev. Lett. (1)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

Other (5)

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Bragg solitons in the nonlinear Schrödinger limit: theory and experiment,” submitted to J. Opt. Soc. Am. B (1998).

G. P. Agrawal, Nonlinear Fiber Optics, (Academic, New York, 1995).

G. Lenz and B. J. Eggleton, “Adiabatic Bragg soliton compression in nonuniform grating structures,” J. Opt. Soc. Am. B, in press.

C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, ed. by E. Wolf (North-Holand, Amsterdam, 1994), pp. 203-260.

L. Dong, M. J. Cole, M. Durkin, M. Ibsen, and R. I. Laming, “40Gbit/s 1.55um transmission over 109km of non-dispersion-shifted fiber with long continuously chirped fiber gratings,” in 1996Opt. Fiber Commun. Conf. (OFC'96), postdeadline paper PD6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Generation of a high-repetition-rate soliton train based on adiabatic compression in a nonuniform fiber Bragg grating. The stop-band width varies along the grating because of changes in the index modulation depth.

Fig. 2.
Fig. 2.

Axial variations of κ(z) (black line) and |β2eff(z)| (red line) inside the grating.

Fig. 3.
Fig. 3.

Input sinusoidal signal (upper plot), and soliton train generated at the grating output (lower plot).

Fig. 4.
Fig. 4.

Input dual-frequency signal spectrum (upper plot) and output spectrum of the soliton train (lower plot).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

i E + z + i 1 V E + t + κ E + Γ s E + 2 E + + 2 Γ × E 2 E + = 0 ,
i E z + i 1 V E t + κ E + + Γ s E 2 E + 2 Γ × E + 2 E = 0 .
i A z 1 2 β 2 2 A t 2 + Γ A 2 A = 0 .
β 2 = 1 V 2 1 γ 2 v 3 δ , Γ = Γ 0 3 v 2 2 v ,
N 2 = L D L NL = Γ I in T 2 β 2 = E S Γ 2 σ eff T | β 2 = 1 ,
E S π n 2 σ eff λ T ( z ) β 2 eff ( z ) = 1 ,
β 2 eff = 2 V 2 ( 3 v 2 ) γ 2 v 2 δ .
T ( L ) = T ( 0 ) β 2 eff ( L ) β 2 eff ( 0 ) .
ξ = 1 T 2 ( 0 ) 0 z β 2 ( z ) d z , F = T ( 0 ) Γ ( z ) β 2 ( z ) A ( z ) ,
i F ξ + 1 2 2 F τ 2 + F 2 F = i g ( ξ ) F ,
g ( ξ ) = 1 2 Γ Γ ξ 1 2 β 2 β 2 ξ = 1 2 β 2 eff β 2 eff ξ .
G eff ( ξ ) = exp ( 2 0 ξ g ( ξ ) ) .
G eff ( z ) = β 2 ( 0 ) β 2 ( z ) Γ ( z ) Γ ( 0 ) = β 2 eff ( 0 ) β 2 eff ( z ) .
T ( L ) = T ( 0 ) G eff ( L ) ,
g L D 1 .
L D 2 L ln ( β 2 eff ( 0 ) β 2 eff ( z ) ) 1 .
A ( t , 0 ) = A 0 sin ( π t T S ) ,
κ ( z ) = κ 0 ( 1 C z ) ,
β 2 eff ( z ) = 2 κ 2 ( z ) δ V 2 [ 2 δ 2 + κ 2 ( z ) ] [ δ 2 κ 2 ( z ) ] .

Metrics