Abstract

We show how novel photonic devices such as broadband quantum memory and efficient quantum frequency transduction can be implemented using three-wave mixing processes in a 1D array of nonlinear waveguides evanescently coupled to nearest neighbors. We do this using an analogy of an atom interacting with an external optical field using both classical and quantum models of the optical fields and adapting well-known coherent processes from atomic optics, such as electromagnetically induced transparency and stimulated Raman adiabatic passage to design. This approach allows the implementation of devices that are very difficult or impossible to implement by conventional techniques.

Full Article  |  PDF Article
More Like This
Storage and retrieval of ultraslow soliton at optical nanofiber interface via electromagnetically induced transparency

Yong Zhou, Can Yi, Qi Liu, Chuan-Kui Wang, and Chaohua Tan
Opt. Express 28(23) 34730-34743 (2020)

Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps

Ahmed Abdelrahman, Tetsuya Mukai, Hartmut Häffner, and Tim Byrnes
Opt. Express 22(3) 3501-3513 (2014)

References

  • View by:

  1. H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).
  2. K. Luke, P. Kharel, C. Reimer, L. He, M. Loncar, and M. Zhang, “Wafer-scale low-loss lithium niobate photonic integrated circuits,” Opt. Express 28(17), 24452–24458 (2020).
    [Crossref]
  3. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref]
  4. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
    [Crossref]
  5. R. Boyd, Nonlinear Optics (Elsevier Science, 2003).
  6. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
    [Crossref]
  7. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15(24), 1476–1478 (1990).
    [Crossref]
  8. J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in linbo3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
    [Crossref]
  9. S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of Parametric Amplification in the Optical Range,” Soviet Journal of Experimental and Theoretical Physics Letters 2, 191 (1965).
  10. G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116(14), 143601 (2016).
    [Crossref]
  11. J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides,” Phys. Rev. Lett. 124(16), 163603 (2020).
    [Crossref]
  12. Y.-H. Cheng, T. Thomay, G. S. Solomon, A. L. Migdall, and S. V. Polyakov, “Statistically background-free, phase-preserving parametric up-conversion with faint light,” Opt. Express 23(14), 18671–18678 (2015).
    [Crossref]
  13. I. A. Burenkov, T. Gerrits, A. Lita, S. W. Nam, L. K. Shalm, and S. V. Polyakov, “Quantum frequency bridge: high-accuracy characterization of a nearly-noiseless parametric frequency converter,” Opt. Express 25(2), 907–917 (2017).
    [Crossref]
  14. P. S. Kuo, J. S. Pelc, C. Langrock, and M. M. Fejer, “Using temperature to reduce noise in quantum frequency conversion,” Opt. Lett. 43(9), 2034–2037 (2018).
    [Crossref]
  15. P. C. Strassmann, A. Martin, N. Gisin, and M. Afzelius, “Spectral noise in frequency conversion from the visible to the telecommunication c-band,” Opt. Express 27(10), 14298–14307 (2019).
    [Crossref]
  16. J. Heng, P. Liu, and Z. Zhang, “Enhanced spectral broadening in an optical parametric oscillator based on a ppln crystal,” Opt. Express 28(11), 16740–16748 (2020).
    [Crossref]
  17. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
    [Crossref]
  18. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
    [Crossref]
  19. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
    [Crossref]
  20. H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett. 100(17), 170506 (2008).
    [Crossref]
  21. A. Rai, G. S. Agarwal, and J. H. H. Perk, “Transport and quantum walk of nonclassical light in coupled waveguides,” Phys. Rev. A 78(4), 042304 (2008).
    [Crossref]
  22. A. L. Jones, “Coupling of optical fibers and scattering in fibers*,” J. Opt. Soc. Am. 55(3), 261–271 (1965).
    [Crossref]
  23. S. Longhi, “Classical simulation of relativistic quantum mechanics in periodic optical structures,” Appl. Phys. B 104(3), 453–468 (2011).
    [Crossref]
  24. R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
    [Crossref]
  25. M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
    [Crossref]
  26. A. A. Sukhorukov, A. S. Solntsev, and J. E. Sipe, “Classical simulation of squeezed light in optical waveguide arrays,” Phys. Rev. A 87(5), 053823 (2013).
    [Crossref]
  27. A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017).
    [Crossref]
  28. E. Travkin, F. Diebel, and C. Denz, “Compact flat band states in optically induced flatland photonic lattices,” Appl. Phys. Lett. 111(1), 011104 (2017).
    [Crossref]
  29. R. Keil, C. Noh, A. Rai, S. Stützer, S. Nolte, D. G. Angelakis, and A. Szameit, “Optical simulation of charge conservation violation and majorana dynamics,” Optica 2(5), 454–459 (2015).
    [Crossref]
  30. S. Longhi, “Jaynes–cummings photonic superlattices,” Opt. Lett. 36(17), 3407–3409 (2011).
    [Crossref]
  31. M. Scully and M. Zubairy, Quantum Optics (Cambridge University Press, 1997).
  32. A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion (invited),” J. Opt. Soc. Am. B 24(2), 295–299 (2007).
    [Crossref]
  33. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19(22), 21445–21456 (2011).
    [Crossref]
  34. P. Fisher, M. Villa, F. Lenzini, and M. Lobino, “Integrated optical device for frequency conversion across the full telecom c-band spectrum,” Phys. Rev. Appl. 13(2), 024017 (2020).
    [Crossref]
  35. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27(1), 43–45 (2002).
    [Crossref]
  36. D. Marcuse, Theory of Dielectric Optical Waveguides (Elsevier Science, 2013).
  37. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in linbo3 waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
    [Crossref]
  38. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched linbo3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett. 28(7), 558–560 (2003).
    [Crossref]
  39. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
    [Crossref]
  40. M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, and M. M. Fejer, “Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides,” Optica 7(1), 40–46 (2020).
    [Crossref]
  41. T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, “Integrated resonators in an ultralow loss si3n4/sio2 platform for multifunction applications,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
    [Crossref]
  42. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31(5), 604–606 (2006).
    [Crossref]
  43. B. W. Shore, “Picturing stimulated raman adiabatic passage: a stirap tutorial,” Adv. Opt. Photonics 9(3), 563–719 (2017).
    [Crossref]
  44. M. Delanty, S. Rebic, and J. Twamley, “Superradiance of harmonic oscillators,” (2011).

2020 (5)

2019 (1)

2018 (4)

P. S. Kuo, J. S. Pelc, C. Langrock, and M. M. Fejer, “Using temperature to reduce noise in quantum frequency conversion,” Opt. Lett. 43(9), 2034–2037 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, “Integrated resonators in an ultralow loss si3n4/sio2 platform for multifunction applications,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

2017 (5)

A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017).
[Crossref]

E. Travkin, F. Diebel, and C. Denz, “Compact flat band states in optically induced flatland photonic lattices,” Appl. Phys. Lett. 111(1), 011104 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

I. A. Burenkov, T. Gerrits, A. Lita, S. W. Nam, L. K. Shalm, and S. V. Polyakov, “Quantum frequency bridge: high-accuracy characterization of a nearly-noiseless parametric frequency converter,” Opt. Express 25(2), 907–917 (2017).
[Crossref]

B. W. Shore, “Picturing stimulated raman adiabatic passage: a stirap tutorial,” Adv. Opt. Photonics 9(3), 563–719 (2017).
[Crossref]

2016 (1)

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116(14), 143601 (2016).
[Crossref]

2015 (2)

2014 (1)

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

2013 (2)

A. A. Sukhorukov, A. S. Solntsev, and J. E. Sipe, “Classical simulation of squeezed light in optical waveguide arrays,” Phys. Rev. A 87(5), 053823 (2013).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

2011 (4)

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19(22), 21445–21456 (2011).
[Crossref]

S. Longhi, “Jaynes–cummings photonic superlattices,” Opt. Lett. 36(17), 3407–3409 (2011).
[Crossref]

S. Longhi, “Classical simulation of relativistic quantum mechanics in periodic optical structures,” Appl. Phys. B 104(3), 453–468 (2011).
[Crossref]

R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
[Crossref]

2008 (2)

H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett. 100(17), 170506 (2008).
[Crossref]

A. Rai, G. S. Agarwal, and J. H. H. Perk, “Transport and quantum walk of nonclassical light in coupled waveguides,” Phys. Rev. A 78(4), 042304 (2008).
[Crossref]

2007 (1)

2006 (1)

2003 (2)

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched linbo3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett. 28(7), 558–560 (2003).
[Crossref]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref]

2002 (1)

1999 (1)

1997 (1)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

1996 (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[Crossref]

1990 (1)

1965 (3)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in linbo3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of Parametric Amplification in the Optical Range,” Soviet Journal of Experimental and Theoretical Physics Letters 2, 191 (1965).

A. L. Jones, “Coupling of optical fibers and scattering in fibers*,” J. Opt. Soc. Am. 55(3), 261–271 (1965).
[Crossref]

Afzelius, M.

Agarwal, G. S.

A. Rai, G. S. Agarwal, and J. H. H. Perk, “Transport and quantum walk of nonclassical light in coupled waveguides,” Phys. Rev. A 78(4), 042304 (2008).
[Crossref]

Akhmanov, S. A.

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of Parametric Amplification in the Optical Range,” Soviet Journal of Experimental and Theoretical Physics Letters 2, 191 (1965).

Angelakis, D. G.

Asobe, M.

Baney, D.

T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, “Integrated resonators in an ultralow loss si3n4/sio2 platform for multifunction applications,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

Bartley, T. J.

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116(14), 143601 (2016).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Blumenthal, D. J.

T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, “Integrated resonators in an ultralow loss si3n4/sio2 platform for multifunction applications,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Boyd, R.

R. Boyd, Nonlinear Optics (Elsevier Science, 2003).

Brener, I.

Brodnik, G. M.

T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, “Integrated resonators in an ultralow loss si3n4/sio2 platform for multifunction applications,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

Burenkov, I. A.

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chen, M.-C.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Cheng, R.

Cheng, Y.-H.

Chou, M. H.

Christodoulides, D. N.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
[Crossref]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref]

Delanty, M.

M. Delanty, S. Rebic, and J. Twamley, “Superradiance of harmonic oscillators,” (2011).

Deng, Y.-H.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Denz, C.

E. Travkin, F. Diebel, and C. Denz, “Compact flat band states in optically induced flatland photonic lattices,” Appl. Phys. Lett. 111(1), 011104 (2017).
[Crossref]

Desiatov, B.

Diebel, F.

E. Travkin, F. Diebel, and C. Denz, “Compact flat band states in optically induced flatland photonic lattices,” Appl. Phys. Lett. 111(1), 011104 (2017).
[Crossref]

Ding, X.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Dreisow, F.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
[Crossref]

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Fadeev, V. V.

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of Parametric Amplification in the Optical Range,” Soviet Journal of Experimental and Theoretical Physics Letters 2, 191 (1965).

Fejer, M. M.

M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, and M. M. Fejer, “Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides,” Optica 7(1), 40–46 (2020).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

P. S. Kuo, J. S. Pelc, C. Langrock, and M. M. Fejer, “Using temperature to reduce noise in quantum frequency conversion,” Opt. Lett. 43(9), 2034–2037 (2018).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19(22), 21445–21456 (2011).
[Crossref]

J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31(5), 604–606 (2006).
[Crossref]

K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27(1), 43–45 (2002).
[Crossref]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in linbo3 waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
[Crossref]

Fisher, P.

P. Fisher, M. Villa, F. Lenzini, and M. Lobino, “Integrated optical device for frequency conversion across the full telecom c-band spectrum,” Phys. Rev. Appl. 13(2), 024017 (2020).
[Crossref]

Gan, L.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Gerrits, T.

I. A. Burenkov, T. Gerrits, A. Lita, S. W. Nam, L. K. Shalm, and S. V. Polyakov, “Quantum frequency bridge: high-accuracy characterization of a nearly-noiseless parametric frequency converter,” Opt. Express 25(2), 907–917 (2017).
[Crossref]

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116(14), 143601 (2016).
[Crossref]

Giordmaine, J. A.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in linbo3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

Gisin, N.

Gräfe, M.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

Gundavarapu, S.

T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, “Integrated resonators in an ultralow loss si3n4/sio2 platform for multifunction applications,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[Crossref]

Harder, G.

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116(14), 143601 (2016).
[Crossref]

He, L.

Heilmann, R.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

Heinrich, M.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
[Crossref]

Heng, J.

Hu, P.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Hu, Y.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Huang, J.

Huffman, T. A.

T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, “Integrated resonators in an ultralow loss si3n4/sio2 platform for multifunction applications,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

Hum, D. S.

Jankowski, M.

Jiang, X.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Jones, A. L.

Keil, R.

R. Keil, C. Noh, A. Rai, S. Stützer, S. Nolte, D. G. Angelakis, and A. Szameit, “Optical simulation of charge conservation violation and majorana dynamics,” Optica 2(5), 454–459 (2015).
[Crossref]

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
[Crossref]

Kharel, P.

Khokhlov, R. V.

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of Parametric Amplification in the Optical Range,” Soviet Journal of Experimental and Theoretical Physics Letters 2, 191 (1965).

Kovrigin, A. I.

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of Parametric Amplification in the Optical Range,” Soviet Journal of Experimental and Theoretical Physics Letters 2, 191 (1965).

Kumar, P.

Kuo, P. S.

Kurz, J. R.

Kwiat, P. G.

Lahini, Y.

H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett. 100(17), 170506 (2008).
[Crossref]

Langrock, C.

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref]

Lenzini, F.

P. Fisher, M. Villa, F. Lenzini, and M. Lobino, “Integrated optical device for frequency conversion across the full telecom c-band spectrum,” Phys. Rev. Appl. 13(2), 024017 (2020).
[Crossref]

Li, H.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Li, L.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Li, Y.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Lita, A.

Lita, A. E.

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116(14), 143601 (2016).
[Crossref]

Liu, N.-L.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Liu, P.

Lobino, M.

P. Fisher, M. Villa, F. Lenzini, and M. Lobino, “Integrated optical device for frequency conversion across the full telecom c-band spectrum,” Phys. Rev. Appl. 13(2), 024017 (2020).
[Crossref]

Loncar, M.

Longhi, S.

S. Longhi, “Classical simulation of relativistic quantum mechanics in periodic optical structures,” Appl. Phys. B 104(3), 453–468 (2011).
[Crossref]

S. Longhi, “Jaynes–cummings photonic superlattices,” Opt. Lett. 36(17), 3407–3409 (2011).
[Crossref]

Lu, C.-Y.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Luke, K.

Lumer, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

Luo, Y.-H.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Ma, C.

J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides,” Phys. Rev. Lett. 124(16), 163603 (2020).
[Crossref]

Ma, L.

Marandi, A.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Elsevier Science, 2013).

Martin, A.

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Migdall, A. L.

Miller, R. C.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in linbo3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

Miyazawa, H.

Mookherjea, S.

J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides,” Phys. Rev. Lett. 124(16), 163603 (2020).
[Crossref]

Morandotti, R.

H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett. 100(17), 170506 (2008).
[Crossref]

Moya-Cessa, H.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
[Crossref]

Nam, S. W.

I. A. Burenkov, T. Gerrits, A. Lita, S. W. Nam, L. K. Shalm, and S. V. Polyakov, “Quantum frequency bridge: high-accuracy characterization of a nearly-noiseless parametric frequency converter,” Opt. Express 25(2), 907–917 (2017).
[Crossref]

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116(14), 143601 (2016).
[Crossref]

Nishida, Y.

Noh, C.

Nolte, S.

R. Keil, C. Noh, A. Rai, S. Stützer, S. Nolte, D. G. Angelakis, and A. Szameit, “Optical simulation of charge conservation violation and majorana dynamics,” Optica 2(5), 454–459 (2015).
[Crossref]

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
[Crossref]

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Parameswaran, K. R.

Pelc, J. S.

Peng, L.-C.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Perets, H. B.

H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett. 100(17), 170506 (2008).
[Crossref]

Perez-Leija, A.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
[Crossref]

Perk, J. H. H.

A. Rai, G. S. Agarwal, and J. H. H. Perk, “Transport and quantum walk of nonclassical light in coupled waveguides,” Phys. Rev. A 78(4), 042304 (2008).
[Crossref]

Phillips, C. R.

Pinho, C.

T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, “Integrated resonators in an ultralow loss si3n4/sio2 platform for multifunction applications,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

Piskarskas, A. S.

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of Parametric Amplification in the Optical Range,” Soviet Journal of Experimental and Theoretical Physics Letters 2, 191 (1965).

Plotnik, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

Podolsky, D.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

Polyakov, S. V.

Pozzi, F.

H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett. 100(17), 170506 (2008).
[Crossref]

Qin, J.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Rai, A.

R. Keil, C. Noh, A. Rai, S. Stützer, S. Nolte, D. G. Angelakis, and A. Szameit, “Optical simulation of charge conservation violation and majorana dynamics,” Optica 2(5), 454–459 (2015).
[Crossref]

A. Rai, G. S. Agarwal, and J. H. H. Perk, “Transport and quantum walk of nonclassical light in coupled waveguides,” Phys. Rev. A 78(4), 042304 (2008).
[Crossref]

Rebic, S.

M. Delanty, S. Rebic, and J. Twamley, “Superradiance of harmonic oscillators,” (2011).

Rechtsman, M. C.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

Reimer, C.

Roussev, R. V.

Rüsing, M.

J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides,” Phys. Rev. Lett. 124(16), 163603 (2020).
[Crossref]

Scully, M.

M. Scully and M. Zubairy, Quantum Optics (Cambridge University Press, 1997).

Segev, M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

Shalm, L. K.

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

Shore, B. W.

B. W. Shore, “Picturing stimulated raman adiabatic passage: a stirap tutorial,” Adv. Opt. Photonics 9(3), 563–719 (2017).
[Crossref]

Silberberg, Y.

H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett. 100(17), 170506 (2008).
[Crossref]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref]

Silberhorn, C.

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116(14), 143601 (2016).
[Crossref]

Sipe, J. E.

A. A. Sukhorukov, A. S. Solntsev, and J. E. Sipe, “Classical simulation of squeezed light in optical waveguide arrays,” Phys. Rev. A 87(5), 053823 (2013).
[Crossref]

Slattery, O.

Solntsev, A. S.

A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017).
[Crossref]

A. A. Sukhorukov, A. S. Solntsev, and J. E. Sipe, “Classical simulation of squeezed light in optical waveguide arrays,” Phys. Rev. A 87(5), 053823 (2013).
[Crossref]

Solomon, G. S.

Sorel, M.

H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett. 100(17), 170506 (2008).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[Crossref]

Strassmann, P. C.

Stützer, S.

Sukhorukov, A. A.

A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017).
[Crossref]

A. A. Sukhorukov, A. S. Solntsev, and J. E. Sipe, “Classical simulation of squeezed light in optical waveguide arrays,” Phys. Rev. A 87(5), 053823 (2013).
[Crossref]

Suzuki, H.

Szameit, A.

R. Keil, C. Noh, A. Rai, S. Stützer, S. Nolte, D. G. Angelakis, and A. Szameit, “Optical simulation of charge conservation violation and majorana dynamics,” Optica 2(5), 454–459 (2015).
[Crossref]

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
[Crossref]

Tadanaga, O.

Tang, X.

Thomay, T.

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[Crossref]

Travkin, E.

E. Travkin, F. Diebel, and C. Denz, “Compact flat band states in optically induced flatland photonic lattices,” Appl. Phys. Lett. 111(1), 011104 (2017).
[Crossref]

Twamley, J.

M. Delanty, S. Rebic, and J. Twamley, “Superradiance of harmonic oscillators,” (2011).

VanDevender, A. P.

Villa, M.

P. Fisher, M. Villa, F. Lenzini, and M. Lobino, “Integrated optical device for frequency conversion across the full telecom c-band spectrum,” Phys. Rev. Appl. 13(2), 024017 (2020).
[Crossref]

Wang, C.

Wang, H.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Wang, Z.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Weinfurter, H.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Wu, D.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Xie, X. P.

Yang, G.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Yang, X.-Y.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

You, L.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Zeilinger, A.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Zeuner, J. M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

Zhang, M.

Zhang, Q.

Zhang, W.-J.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Zhang, Z.

Zhao, J.

J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides,” Phys. Rev. Lett. 124(16), 163603 (2020).
[Crossref]

Zhong, H.-S.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

Zubairy, M.

M. Scully and M. Zubairy, Quantum Optics (Cambridge University Press, 1997).

Adv. Opt. Photonics (1)

B. W. Shore, “Picturing stimulated raman adiabatic passage: a stirap tutorial,” Adv. Opt. Photonics 9(3), 563–719 (2017).
[Crossref]

Appl. Phys. B (1)

S. Longhi, “Classical simulation of relativistic quantum mechanics in periodic optical structures,” Appl. Phys. B 104(3), 453–468 (2011).
[Crossref]

Appl. Phys. Lett. (1)

E. Travkin, F. Diebel, and C. Denz, “Compact flat band states in optically induced flatland photonic lattices,” Appl. Phys. Lett. 111(1), 011104 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, “Integrated resonators in an ultralow loss si3n4/sio2 platform for multifunction applications,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon w-states,” Nat. Photonics 8(10), 791–795 (2014).
[Crossref]

Nature (4)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[Crossref]

Optica (4)

Phys. Rev. A (2)

A. Rai, G. S. Agarwal, and J. H. H. Perk, “Transport and quantum walk of nonclassical light in coupled waveguides,” Phys. Rev. A 78(4), 042304 (2008).
[Crossref]

A. A. Sukhorukov, A. S. Solntsev, and J. E. Sipe, “Classical simulation of squeezed light in optical waveguide arrays,” Phys. Rev. A 87(5), 053823 (2013).
[Crossref]

Phys. Rev. Appl. (1)

P. Fisher, M. Villa, F. Lenzini, and M. Lobino, “Integrated optical device for frequency conversion across the full telecom c-band spectrum,” Phys. Rev. Appl. 13(2), 024017 (2020).
[Crossref]

Phys. Rev. Lett. (5)

R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced fock states and quantum correlations in glauber-fock photonic lattices,” Phys. Rev. Lett. 107(10), 103601 (2011).
[Crossref]

H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett. 100(17), 170506 (2008).
[Crossref]

G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, and C. Silberhorn, “Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics,” Phys. Rev. Lett. 116(14), 143601 (2016).
[Crossref]

J. Zhao, C. Ma, M. Rüsing, and S. Mookherjea, “High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides,” Phys. Rev. Lett. 124(16), 163603 (2020).
[Crossref]

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in linbo3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

Rev. Phys. (1)

A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017).
[Crossref]

Soviet Journal of Experimental and Theoretical Physics Letters (1)

S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev, and R. V. Khokhlov, “Observation of Parametric Amplification in the Optical Range,” Soviet Journal of Experimental and Theoretical Physics Letters 2, 191 (1965).

Other (5)

R. Boyd, Nonlinear Optics (Elsevier Science, 2003).

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational advantage using photons,” Science (2020).

D. Marcuse, Theory of Dielectric Optical Waveguides (Elsevier Science, 2013).

M. Scully and M. Zubairy, Quantum Optics (Cambridge University Press, 1997).

M. Delanty, S. Rebic, and J. Twamley, “Superradiance of harmonic oscillators,” (2011).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The analogy between TWM of classical fields, the two-level atom interacting with an external field, and TWM of single-photon fields.
Fig. 2.
Fig. 2. Effective level configuration for EIT in two coupled waveguides supporting two spectral modes “i” and “s” with TWM in the waveguide #1.
Fig. 3.
Fig. 3. A numerical simulation of photon flux in the ultrafast all-optical switch implemented with a coupled linear waveguide (LWG) and nonlinear waveguide (NLWG). In the absence of an optical control pump field, the signal field is transferred from LWG to NLWG (left). When the control field is applied, the signal field remains in LWG due to an EIT-like destructive interference (right). Bottom graphs show a conceptual layout of waveguides in the proposed experimental implementation (disproportionally scaled because waveguide width is of order of 1 $\mu$ m); color gradients are the artistic representations of the switching process in coupled LWG and NLWG. Simulation parameters: $\Lambda ^i=0.1\Omega _1=0.023$ mm $^{-1}$ , $\Delta k_1=0.15$ mm $^{-1}$ (see text).
Fig. 4.
Fig. 4. Effective level configuration for STIRAP-like frequency conversion between telecommunication bands.
Fig. 5.
Fig. 5. A numerical simulation of photon flux for all-optical STIRAP frequency conversion implemented with 3 coupled waveguides. The central nonlinear waveguide is the carrier of the target fields. Side waveguides deliver pump fields. The bottom plot shows a conceptual layout of waveguides in the proposed experimental implementation; color gradients are used for the artistic representation of optical fields. Simulation parameters are chosen such that nonlinear couplings are $\Omega _{ab}^{\mathrm {max}}\approx 0.2$ mm $^{-1}$ and $\Omega _{bc}^{\mathrm {max}}\approx 0.25$ mm $^{-1}$ for pump powers of 200 mW.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

{ z A i = 2 i ω i 2 d e f f k i c 2 A p A s e i Δ k z , z A s = 2 i ω s 2 d e f f k s c 2 A p A i e i Δ k z ,
Ω / 2 = 2 d e f f c | A p | ω i ω s / ( n i , n s ) ; ϕ = arg ( A p ) ; A i = C i ω i / n i ; A s = C s ω s / n s ,
{ z C i = i Ω 2 C s e i ϕ e i Δ k z , z C s = i Ω 2 C i e i ϕ e i Δ k z .
F i,s = I i,s ω i,s = 2 n i c ϵ 0 | A i,s | 2 ω i,s = 2 c ϵ 0 | C i,s | 2 .
H = i 2 d e f f | A p | c ( ω i n i e i ϕ e i Δ k z a i a s + ω s n s e i ϕ e i Δ k z a s a i ) .
ψ ( 0 ) = ( b | 1 i , 0 s a i + b | 0 i , 1 s a s ) | 0 ,
1 = | b | 1 i , 0 s | 2 + | b | 0 i , 1 s | 2 .
ψ ( z ) = ( b | 1 i , 0 s ( z ) a i + b | 0 i , 1 s ( z ) a s ) | 0 .
{ z b | 1 i , 0 s = i Ω 2 b | 0 i , 1 s e i ϕ e i Δ k z , z b | 0 i , 1 s = i Ω 2 b | 1 i , 0 s e i ϕ e i Δ k z .
{ z b 20 = i Ω 2 2 b 11 e i ϕ e i Δ k z , z b 11 = i Ω 2 2 ( b 20 e i ϕ e i Δ k z + b 02 e i ϕ e i Δ k z ) , z b 02 = i Ω 2 2 b 11 e i ϕ e i Δ k z ,
z A j m = i ( c j , j + 1 m A j + 1 m + c j , j 1 m A j 1 m ) .
z C j m = i ( Λ j , j + 1 m C j + 1 m Λ j , j 1 m C j 1 m ) + + i / 2 l m Ω j l m ( z ) e ± i ϕ j l m e ± i Δ k j l m z C j l ,
{ i z C 0 i = Λ i C 1 i Ω 0 e i ϕ 0 e i Δ k 0 z C 0 s , i z C 0 s = Λ s C 1 i Ω 0 e i ϕ 0 e i Δ k 0 z C 0 i , i z C 1 i = Λ i C 0 i Ω 1 e i ϕ 1 e i Δ k 1 z C 1 s , i z C 1 s = Λ s C 0 s Ω 1 e i ϕ 1 e i Δ k 1 z C 1 i ,
{ i z C 0 i ( z ) = Λ i C 1 i , i z C 1 i ( z ) = Λ i C 1 i Ω 1 e i ϕ 1 e i Δ k 1 z C 1 s , i z C 1 s ( z ) = Ω 1 e i ϕ 1 e i Δ k 1 z C 1 i ,
{ i z C a ( z ) = Ω a b ( z ) e i Δ k a b z C b , i z C b ( z ) = Ω a b ( z ) e i Δ k a b z C a Ω b c ( z ) e ± i Δ k b c z C c , i z C c ( z ) = Ω b c ( z ) e i Δ k b c z C b
H ^ = H ^ 0 + H ^ int ,
H 0 = j = 1 , N m = 1 , M k j m a j m a j m
H int = j = 1 , N 1 m < l M ( P j l m ( z ) e i Δ k j l m z a j m a j l + h . c . ) + j = 1 , N m = 1 , M ( C j , j + 1 m a j m a j + 1 m + C j , j 1 m a j m a j 1 m + h . c . ) ,
i z P j l m = C j , j + 1 l m P j + 1 l m C j , j 1 l m P j 1 l m ,

Metrics