Abstract

Single-cell-scale selective manipulation and targeted capture play a vital role in cell behavior analysis. However, selective microcapture has primarily been performed in specific circumstances to maintain the trapping state, making the subsequent in situ characterization and analysis of specific particles or cells difficult and imprecise. Herein, we propose a novel method that combines femtosecond laser two-photon polymerization (TPP) micromachining technology with the operation of optical tweezers (OTs) to achieve selective and targeted capture of single particles and cells. Diverse ordered microcages with different shapes and dimensions were self-assembled by micropillars fabricated via TPP. The micropillars with high aspect ratios were processed by single exposure, and the parameters of the micropillar arrays were investigated to optimize the capillary-force-driven self-assembly process of the anisotropic microcages. Finally, single microparticles and cells were selectively transported to the desired microcages by manipulating the flexibly of the OTs in a few minutes. The captured microparticles and cells were kept trapped without additional forces.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Self-assembled micropillars fabricated by holographic femtosecond multi-foci beams forin situ trapping of microparticles

Yanlei Hu, Wenfei Feng, Cheng Xue, Zhaoxin Lao, Shengyun Ji, Ze Cai, Wulin Zhu, Jiawen Li, Dong Wu, and Jiaru Chu
Opt. Lett. 45(17) 4698-4701 (2020)

High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells

Liang Yang, Shengyun Ji, Kenan Xie, Wenqiang Du, Bingjie Liu, Yanlei Hu, Jiawen Li, Gang Zhao, Dong Wu, Wenhao Huang, Suling Liu, Hongyuan Jiang, and Jiaru Chu
Opt. Express 25(7) 8144-8157 (2017)

Flow-assisted Single-beam Optothermal Manipulation of Microparticles

Yangyang Liu and Andrew W. Poon
Opt. Express 18(17) 18483-18491 (2010)

References

  • View by:
  • |
  • |
  • |

  1. F. Larramendy, S. Yoshida, D. Maier, Z. Fekete, S. Takeuchi, and O. Paul, “3D arrays of microcages by two-photon lithography for spatial organization of living cells,” Lab Chip 19(5), 875–884 (2019).
    [Crossref]
  2. W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, and L. Liu, “Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening,” Mater. Des. 183, 108182 (2019).
    [Crossref]
  3. J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
    [Crossref]
  4. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: Cancer J. Clin. 68(6), 394–424 (2018).
    [Crossref]
  5. S. Valastyan and R. A. Weinberg, “Tumor metastasis: Molecular insights and evolving paradigms,” Cell 147(2), 275–292 (2011).
    [Crossref]
  6. S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
    [Crossref]
  7. Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
    [Crossref]
  8. Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
    [Crossref]
  9. G.M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref]
  10. T. Sun, J. Kovac, and J. Voldman, “Image-based single-cell sorting via dual-photopolymerized microwell arrays,” Anal. Chem. 86(2), 977–981 (2014).
    [Crossref]
  11. M. Azarmanesh, M. Dejam, P. Azizian, G. Yesiloz, A. A. Mohamad, and A. Sanati-Nezhad, “Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells,” Sci. Rep. 9(1), 6723 (2019).
    [Crossref]
  12. K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
    [Crossref]
  13. C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
    [Crossref]
  14. B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
    [Crossref]
  15. J. Chung, Y. J. Kim, and E. Yoon, “Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures,” Appl. Phys. Lett. 98(12), 123701 (2011).
    [Crossref]
  16. S. Cui, Y. Liu, W. Wang, Y. Sun, and Y. Fan, “A microfluidic chip for highly efficient cell capturing and pairing,” Biomicrofluidics 5(3), 032003 (2011).
    [Crossref]
  17. Q.D. Tran, T.F. Kong, D. Hu, R.H.W. Marcos, and Lam, “Deterministic sequential isolation of floating cancer cells under continuous flow,” Lab Chip 16(15), 2813–2819 (2016).
    [Crossref]
  18. X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
    [Crossref]
  19. W. Chen, M. Sun, X. Fan, and H. Xie, “Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release,” Appl. Mater. Today 19, 100583 (2020).
    [Crossref]
  20. S. Park, Y. Zhang, T. H. Wang, and S. Yang, “Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity,” Lab Chip 11(17), 2893–2900 (2011).
    [Crossref]
  21. S. Shim, K. Stemke-Hale, J. Noshari, F. F. Becker, and P. R. C. Gascoyne, “Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems,” Biomicrofluidics 7(1), 011808 (2013).
    [Crossref]
  22. W. Liang, Y. Zhao, L. Liu, Y. Wang, W.J. Li, and G. Bin Lee, “Determination of Cell Membrane Capacitance and Conductance via Optically Induced Electrokinetics,” Biophys. J. 113(7), 1531–1539 (2017).
    [Crossref]
  23. Y. S. Chen, K. C. Chung, W. Y. Huang, W. Bin Lee, C. Y. Fu, C. H. Wang, and G. Bin Lee, “Generating digital drug cocktails: Via optical manipulation of drug-containing particles and photo-patterning of hydrogels,” Lab Chip 19(10), 1764–1771 (2019).
    [Crossref]
  24. M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, and A. J. Hart, “Diverse 3D microarchitectures made by capillary forming of carbon nanotubes,” Adv. Mater. 22(39), 4384–4389 (2010).
    [Crossref]
  25. H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
    [Crossref]
  26. K. Malachowski, M. Jamal, Q. Jin, B. Polat, C. J. Morris, and D. H. Gracias, “Self-Folding Single Cell Grippers,” Nano Lett. 14(7), 4164–4170 (2014).
    [Crossref]
  27. Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
    [Crossref]
  28. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref]
  29. K. Obata, A. EI-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
    [Crossref]
  30. D. Yang, L. P. Liu, Q. H. Gong, and Y. Li, “Rapid Two-photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering,” Macromol. Rapid Commun. 40(8), 1970017 (2019).
    [Crossref]
  31. Q. Geng, D. Wang, P. Chen, and S. C. Chen, “Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization,” Nat. Commun. 10(1), 2179 (2019).
    [Crossref]
  32. Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
    [Crossref]
  33. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
    [Crossref]
  34. Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
    [Crossref]
  35. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref]
  36. Z. Zhang, T. E. P. Kimkes, and M. Heinemann, “Manipulating rod-shaped bacteria with optical tweezers,” Sci. Rep. 9(1), 19086 (2019).
    [Crossref]
  37. X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
    [Crossref]
  38. B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
    [Crossref]
  39. G. Xiao, T. Kuang, B. Luo, W. Xiong, X. Han, X. Chen, and H. Luo, “Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers,” Opt. Express 27(25), 36653 (2019).
    [Crossref]
  40. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [Crossref]
  41. W. J. Tao, H. Lin, T. Sun, A. K. Samanta, and R. Arlinghaus, “BCR-ABL oncogenic transformation of NIH 3T3 fibroblasts requires the IL-3 receptor,” Oncogene 27(22), 3194–3200 (2008).
    [Crossref]
  42. Q. Nong, X. Chen, L. Hu, Y. Huang, T. Luan, H. Liu, and B. Chen, “Identification and characterization of Gd-binding proteins in NIH-3T3 cells,” Talanta 219, 121281 (2020).
    [Crossref]

2020 (5)

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

W. Chen, M. Sun, X. Fan, and H. Xie, “Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release,” Appl. Mater. Today 19, 100583 (2020).
[Crossref]

Q. Nong, X. Chen, L. Hu, Y. Huang, T. Luan, H. Liu, and B. Chen, “Identification and characterization of Gd-binding proteins in NIH-3T3 cells,” Talanta 219, 121281 (2020).
[Crossref]

2019 (11)

Z. Zhang, T. E. P. Kimkes, and M. Heinemann, “Manipulating rod-shaped bacteria with optical tweezers,” Sci. Rep. 9(1), 19086 (2019).
[Crossref]

G. Xiao, T. Kuang, B. Luo, W. Xiong, X. Han, X. Chen, and H. Luo, “Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers,” Opt. Express 27(25), 36653 (2019).
[Crossref]

M. Azarmanesh, M. Dejam, P. Azizian, G. Yesiloz, A. A. Mohamad, and A. Sanati-Nezhad, “Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells,” Sci. Rep. 9(1), 6723 (2019).
[Crossref]

S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
[Crossref]

F. Larramendy, S. Yoshida, D. Maier, Z. Fekete, S. Takeuchi, and O. Paul, “3D arrays of microcages by two-photon lithography for spatial organization of living cells,” Lab Chip 19(5), 875–884 (2019).
[Crossref]

W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, and L. Liu, “Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening,” Mater. Des. 183, 108182 (2019).
[Crossref]

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Y. S. Chen, K. C. Chung, W. Y. Huang, W. Bin Lee, C. Y. Fu, C. H. Wang, and G. Bin Lee, “Generating digital drug cocktails: Via optical manipulation of drug-containing particles and photo-patterning of hydrogels,” Lab Chip 19(10), 1764–1771 (2019).
[Crossref]

D. Yang, L. P. Liu, Q. H. Gong, and Y. Li, “Rapid Two-photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering,” Macromol. Rapid Commun. 40(8), 1970017 (2019).
[Crossref]

Q. Geng, D. Wang, P. Chen, and S. C. Chen, “Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization,” Nat. Commun. 10(1), 2179 (2019).
[Crossref]

Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
[Crossref]

2018 (3)

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: Cancer J. Clin. 68(6), 394–424 (2018).
[Crossref]

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

2017 (3)

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

W. Liang, Y. Zhao, L. Liu, Y. Wang, W.J. Li, and G. Bin Lee, “Determination of Cell Membrane Capacitance and Conductance via Optically Induced Electrokinetics,” Biophys. J. 113(7), 1531–1539 (2017).
[Crossref]

2016 (1)

Q.D. Tran, T.F. Kong, D. Hu, R.H.W. Marcos, and Lam, “Deterministic sequential isolation of floating cancer cells under continuous flow,” Lab Chip 16(15), 2813–2819 (2016).
[Crossref]

2014 (2)

T. Sun, J. Kovac, and J. Voldman, “Image-based single-cell sorting via dual-photopolymerized microwell arrays,” Anal. Chem. 86(2), 977–981 (2014).
[Crossref]

K. Malachowski, M. Jamal, Q. Jin, B. Polat, C. J. Morris, and D. H. Gracias, “Self-Folding Single Cell Grippers,” Nano Lett. 14(7), 4164–4170 (2014).
[Crossref]

2013 (2)

S. Shim, K. Stemke-Hale, J. Noshari, F. F. Becker, and P. R. C. Gascoyne, “Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems,” Biomicrofluidics 7(1), 011808 (2013).
[Crossref]

K. Obata, A. EI-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

2012 (1)

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref]

2011 (5)

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref]

S. Valastyan and R. A. Weinberg, “Tumor metastasis: Molecular insights and evolving paradigms,” Cell 147(2), 275–292 (2011).
[Crossref]

S. Park, Y. Zhang, T. H. Wang, and S. Yang, “Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity,” Lab Chip 11(17), 2893–2900 (2011).
[Crossref]

J. Chung, Y. J. Kim, and E. Yoon, “Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures,” Appl. Phys. Lett. 98(12), 123701 (2011).
[Crossref]

S. Cui, Y. Liu, W. Wang, Y. Sun, and Y. Fan, “A microfluidic chip for highly efficient cell capturing and pairing,” Biomicrofluidics 5(3), 032003 (2011).
[Crossref]

2010 (3)

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, and A. J. Hart, “Diverse 3D microarchitectures made by capillary forming of carbon nanotubes,” Adv. Mater. 22(39), 4384–4389 (2010).
[Crossref]

2008 (1)

W. J. Tao, H. Lin, T. Sun, A. K. Samanta, and R. Arlinghaus, “BCR-ABL oncogenic transformation of NIH 3T3 fibroblasts requires the IL-3 receptor,” Oncogene 27(22), 3194–3200 (2008).
[Crossref]

2007 (1)

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[Crossref]

2006 (1)

G.M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

2001 (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref]

Arlinghaus, R.

W. J. Tao, H. Lin, T. Sun, A. K. Samanta, and R. Arlinghaus, “BCR-ABL oncogenic transformation of NIH 3T3 fibroblasts requires the IL-3 receptor,” Oncogene 27(22), 3194–3200 (2008).
[Crossref]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref]

Azarmanesh, M.

M. Azarmanesh, M. Dejam, P. Azizian, G. Yesiloz, A. A. Mohamad, and A. Sanati-Nezhad, “Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells,” Sci. Rep. 9(1), 6723 (2019).
[Crossref]

Azizian, P.

M. Azarmanesh, M. Dejam, P. Azizian, G. Yesiloz, A. A. Mohamad, and A. Sanati-Nezhad, “Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells,” Sci. Rep. 9(1), 6723 (2019).
[Crossref]

Bankey, P. E.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Becker, F. F.

S. Shim, K. Stemke-Hale, J. Noshari, F. F. Becker, and P. R. C. Gascoyne, “Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems,” Biomicrofluidics 7(1), 011808 (2013).
[Crossref]

Bin Lee, G.

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

Y. S. Chen, K. C. Chung, W. Y. Huang, W. Bin Lee, C. Y. Fu, C. H. Wang, and G. Bin Lee, “Generating digital drug cocktails: Via optical manipulation of drug-containing particles and photo-patterning of hydrogels,” Lab Chip 19(10), 1764–1771 (2019).
[Crossref]

W. Liang, Y. Zhao, L. Liu, Y. Wang, W.J. Li, and G. Bin Lee, “Determination of Cell Membrane Capacitance and Conductance via Optically Induced Electrokinetics,” Biophys. J. 113(7), 1531–1539 (2017).
[Crossref]

Bin Lee, W.

Y. S. Chen, K. C. Chung, W. Y. Huang, W. Bin Lee, C. Y. Fu, C. H. Wang, and G. Bin Lee, “Generating digital drug cocktails: Via optical manipulation of drug-containing particles and photo-patterning of hydrogels,” Lab Chip 19(10), 1764–1771 (2019).
[Crossref]

Bray, F.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: Cancer J. Clin. 68(6), 394–424 (2018).
[Crossref]

Brownstein, B. H.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Cai, S.

W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, and L. Liu, “Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening,” Mater. Des. 183, 108182 (2019).
[Crossref]

Cai, Z.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

Camp, D. G.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Cha, S. K.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Chatzipirpiridis, G.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Chen, B.

Q. Nong, X. Chen, L. Hu, Y. Huang, T. Luan, H. Liu, and B. Chen, “Identification and characterization of Gd-binding proteins in NIH-3T3 cells,” Talanta 219, 121281 (2020).
[Crossref]

Chen, P.

Q. Geng, D. Wang, P. Chen, and S. C. Chen, “Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization,” Nat. Commun. 10(1), 2179 (2019).
[Crossref]

Chen, Q. D.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Chen, S.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref]

Chen, S. C.

Q. Geng, D. Wang, P. Chen, and S. C. Chen, “Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization,” Nat. Commun. 10(1), 2179 (2019).
[Crossref]

Chen, W.

W. Chen, M. Sun, X. Fan, and H. Xie, “Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release,” Appl. Mater. Today 19, 100583 (2020).
[Crossref]

Chen, X.

Q. Nong, X. Chen, L. Hu, Y. Huang, T. Luan, H. Liu, and B. Chen, “Identification and characterization of Gd-binding proteins in NIH-3T3 cells,” Talanta 219, 121281 (2020).
[Crossref]

G. Xiao, T. Kuang, B. Luo, W. Xiong, X. Han, X. Chen, and H. Luo, “Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers,” Opt. Express 27(25), 36653 (2019).
[Crossref]

Chen, X. Z.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Chen, Y. S.

Y. S. Chen, K. C. Chung, W. Y. Huang, W. Bin Lee, C. Y. Fu, C. H. Wang, and G. Bin Lee, “Generating digital drug cocktails: Via optical manipulation of drug-containing particles and photo-patterning of hydrogels,” Lab Chip 19(10), 1764–1771 (2019).
[Crossref]

Cheng, Y.

Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
[Crossref]

Chichkov, B. N.

K. Obata, A. EI-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Chu, J.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

Chu, J. R.

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Chu, W.

Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
[Crossref]

Chung, J.

J. Chung, Y. J. Kim, and E. Yoon, “Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures,” Appl. Phys. Lett. 98(12), 123701 (2011).
[Crossref]

Chung, K. C.

Y. S. Chen, K. C. Chung, W. Y. Huang, W. Bin Lee, C. Y. Fu, C. H. Wang, and G. Bin Lee, “Generating digital drug cocktails: Via optical manipulation of drug-containing particles and photo-patterning of hydrogels,” Lab Chip 19(10), 1764–1771 (2019).
[Crossref]

Copic, D.

M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, and A. J. Hart, “Diverse 3D microarchitectures made by capillary forming of carbon nanotubes,” Adv. Mater. 22(39), 4384–4389 (2010).
[Crossref]

Costa, K. D.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref]

Cui, S.

S. Cui, Y. Liu, W. Wang, Y. Sun, and Y. Fan, “A microfluidic chip for highly efficient cell capturing and pairing,” Biomicrofluidics 5(3), 032003 (2011).
[Crossref]

Dai, Y.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

Davis, R. W.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

De, A.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

De Volder, M.

M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, and A. J. Hart, “Diverse 3D microarchitectures made by capillary forming of carbon nanotubes,” Adv. Mater. 22(39), 4384–4389 (2010).
[Crossref]

Dejam, M.

M. Azarmanesh, M. Dejam, P. Azizian, G. Yesiloz, A. A. Mohamad, and A. Sanati-Nezhad, “Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells,” Sci. Rep. 9(1), 6723 (2019).
[Crossref]

Ding, Y.

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Dong, M.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Dong, X.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[Crossref]

Duan, X.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[Crossref]

Dwivedi, S.

S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
[Crossref]

EI-Tamer, A.

K. Obata, A. EI-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Fagan, S. P.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Fan, L.

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Fan, X.

W. Chen, M. Sun, X. Fan, and H. Xie, “Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release,” Appl. Mater. Today 19, 100583 (2020).
[Crossref]

Fan, Y.

S. Cui, Y. Liu, W. Wang, Y. Sun, and Y. Fan, “A microfluidic chip for highly efficient cell capturing and pairing,” Biomicrofluidics 5(3), 032003 (2011).
[Crossref]

Fekete, Z.

F. Larramendy, S. Yoshida, D. Maier, Z. Fekete, S. Takeuchi, and O. Paul, “3D arrays of microcages by two-photon lithography for spatial organization of living cells,” Lab Chip 19(5), 875–884 (2019).
[Crossref]

Ferlay, J.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: Cancer J. Clin. 68(6), 394–424 (2018).
[Crossref]

Fu, C. Y.

Y. S. Chen, K. C. Chung, W. Y. Huang, W. Bin Lee, C. Y. Fu, C. H. Wang, and G. Bin Lee, “Generating digital drug cocktails: Via optical manipulation of drug-containing particles and photo-patterning of hydrogels,” Lab Chip 19(10), 1764–1771 (2019).
[Crossref]

Gascoyne, P. R. C.

S. Shim, K. Stemke-Hale, J. Noshari, F. F. Becker, and P. R. C. Gascoyne, “Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems,” Biomicrofluidics 7(1), 011808 (2013).
[Crossref]

Geng, Q.

Q. Geng, D. Wang, P. Chen, and S. C. Chen, “Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization,” Nat. Commun. 10(1), 2179 (2019).
[Crossref]

Gong, Q.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[Crossref]

Gong, Q. H.

D. Yang, L. P. Liu, Q. H. Gong, and Y. Li, “Rapid Two-photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering,” Macromol. Rapid Commun. 40(8), 1970017 (2019).
[Crossref]

Goverman, J.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Gracias, D. H.

K. Malachowski, M. Jamal, Q. Jin, B. Polat, C. J. Morris, and D. H. Gracias, “Self-Folding Single Cell Grippers,” Nano Lett. 14(7), 4164–4170 (2014).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Guo, J.

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Han, K. H.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Han, X.

Hart, A. J.

M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, and A. J. Hart, “Diverse 3D microarchitectures made by capillary forming of carbon nanotubes,” Adv. Mater. 22(39), 4384–4389 (2010).
[Crossref]

Heinemann, M.

Z. Zhang, T. E. P. Kimkes, and M. Heinemann, “Manipulating rod-shaped bacteria with optical tweezers,” Sci. Rep. 9(1), 19086 (2019).
[Crossref]

Heo, M.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Hinze, U.

K. Obata, A. EI-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Höfemann, H.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref]

Hu, C.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Hu, D.

Q.D. Tran, T.F. Kong, D. Hu, R.H.W. Marcos, and Lam, “Deterministic sequential isolation of floating cancer cells under continuous flow,” Lab Chip 16(15), 2813–2819 (2016).
[Crossref]

Hu, G.

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Hu, L.

Q. Nong, X. Chen, L. Hu, Y. Huang, T. Luan, H. Liu, and B. Chen, “Identification and characterization of Gd-binding proteins in NIH-3T3 cells,” Talanta 219, 121281 (2020).
[Crossref]

Hu, Y.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

Hu, Y. L.

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Huang, W. Y.

Y. S. Chen, K. C. Chung, W. Y. Huang, W. Bin Lee, C. Y. Fu, C. H. Wang, and G. Bin Lee, “Generating digital drug cocktails: Via optical manipulation of drug-containing particles and photo-patterning of hydrogels,” Lab Chip 19(10), 1764–1771 (2019).
[Crossref]

Huang, Y.

Q. Nong, X. Chen, L. Hu, Y. Huang, T. Luan, H. Liu, and B. Chen, “Identification and characterization of Gd-binding proteins in NIH-3T3 cells,” Talanta 219, 121281 (2020).
[Crossref]

Irimia, D.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Jamal, M.

K. Malachowski, M. Jamal, Q. Jin, B. Polat, C. J. Morris, and D. H. Gracias, “Self-Folding Single Cell Grippers,” Nano Lett. 14(7), 4164–4170 (2014).
[Crossref]

Jemal, A.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: Cancer J. Clin. 68(6), 394–424 (2018).
[Crossref]

Jeong, S. J.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Ji, S.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

Jin, H. M.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Jin, Q.

K. Malachowski, M. Jamal, Q. Jin, B. Polat, C. J. Morris, and D. H. Gracias, “Self-Folding Single Cell Grippers,” Nano Lett. 14(7), 4164–4170 (2014).
[Crossref]

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

Kim, B. H.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Kim, J. H.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Kim, J. Y.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Kim, S. O.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Kim, Y. J.

J. Chung, Y. J. Kim, and E. Yoon, “Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures,” Appl. Phys. Lett. 98(12), 123701 (2011).
[Crossref]

Kimkes, T. E. P.

Z. Zhang, T. E. P. Kimkes, and M. Heinemann, “Manipulating rod-shaped bacteria with optical tweezers,” Sci. Rep. 9(1), 19086 (2019).
[Crossref]

Koch, L.

K. Obata, A. EI-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Kong, M.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref]

Kong, T.F.

Q.D. Tran, T.F. Kong, D. Hu, R.H.W. Marcos, and Lam, “Deterministic sequential isolation of floating cancer cells under continuous flow,” Lab Chip 16(15), 2813–2819 (2016).
[Crossref]

Kotz, K. T.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Kovac, J.

T. Sun, J. Kovac, and J. Voldman, “Image-based single-cell sorting via dual-photopolymerized microwell arrays,” Anal. Chem. 86(2), 977–981 (2014).
[Crossref]

Kuang, T.

Lai, Y.

W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, and L. Liu, “Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening,” Mater. Des. 183, 108182 (2019).
[Crossref]

Lam,

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Q.D. Tran, T.F. Kong, D. Hu, R.H.W. Marcos, and Lam, “Deterministic sequential isolation of floating cancer cells under continuous flow,” Lab Chip 16(15), 2813–2819 (2016).
[Crossref]

Landenberger, B.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref]

Lao, Z.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

Lao, Z. X.

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Larramendy, F.

F. Larramendy, S. Yoshida, D. Maier, Z. Fekete, S. Takeuchi, and O. Paul, “3D arrays of microcages by two-photon lithography for spatial organization of living cells,” Lab Chip 19(5), 875–884 (2019).
[Crossref]

Lau, D.

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Li, G.

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

Li, J.

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

Li, J. W.

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Li, P.

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

Li, R. A.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref]

Li, W.

Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
[Crossref]

Li, W. J.

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

Li, W.J.

W. Liang, Y. Zhao, L. Liu, Y. Wang, W.J. Li, and G. Bin Lee, “Determination of Cell Membrane Capacitance and Conductance via Optically Induced Electrokinetics,” Biophys. J. 113(7), 1531–1539 (2017).
[Crossref]

Li, Y.

D. Yang, L. P. Liu, Q. H. Gong, and Y. Li, “Rapid Two-photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering,” Macromol. Rapid Commun. 40(8), 1970017 (2019).
[Crossref]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[Crossref]

Liang, W.

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

W. Liang, Y. Zhao, L. Liu, Y. Wang, W.J. Li, and G. Bin Lee, “Determination of Cell Membrane Capacitance and Conductance via Optically Induced Electrokinetics,” Biophys. J. 113(7), 1531–1539 (2017).
[Crossref]

Lin, H.

W. J. Tao, H. Lin, T. Sun, A. K. Samanta, and R. Arlinghaus, “BCR-ABL oncogenic transformation of NIH 3T3 fibroblasts requires the IL-3 receptor,” Oncogene 27(22), 3194–3200 (2008).
[Crossref]

Lingeswaran, M.

S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
[Crossref]

Liu, C.

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Liu, H.

Q. Nong, X. Chen, L. Hu, Y. Huang, T. Luan, H. Liu, and B. Chen, “Identification and characterization of Gd-binding proteins in NIH-3T3 cells,” Talanta 219, 121281 (2020).
[Crossref]

Liu, J. H.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Liu, L.

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, and L. Liu, “Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening,” Mater. Des. 183, 108182 (2019).
[Crossref]

W. Liang, Y. Zhao, L. Liu, Y. Wang, W.J. Li, and G. Bin Lee, “Determination of Cell Membrane Capacitance and Conductance via Optically Induced Electrokinetics,” Biophys. J. 113(7), 1531–1539 (2017).
[Crossref]

Liu, L. P.

D. Yang, L. P. Liu, Q. H. Gong, and Y. Li, “Rapid Two-photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering,” Macromol. Rapid Commun. 40(8), 1970017 (2019).
[Crossref]

Liu, Y.

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

S. Cui, Y. Liu, W. Wang, Y. Sun, and Y. Fan, “A microfluidic chip for highly efficient cell capturing and pairing,” Biomicrofluidics 5(3), 032003 (2011).
[Crossref]

Liu, Z.

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

Lu, W.

M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, and A. J. Hart, “Diverse 3D microarchitectures made by capillary forming of carbon nanotubes,” Adv. Mater. 22(39), 4384–4389 (2010).
[Crossref]

Luan, T.

Q. Nong, X. Chen, L. Hu, Y. Huang, T. Luan, H. Liu, and B. Chen, “Identification and characterization of Gd-binding proteins in NIH-3T3 cells,” Talanta 219, 121281 (2020).
[Crossref]

Luo, B.

Luo, G.

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Luo, H.

Luo, T.

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Maier, D.

F. Larramendy, S. Yoshida, D. Maier, Z. Fekete, S. Takeuchi, and O. Paul, “3D arrays of microcages by two-photon lithography for spatial organization of living cells,” Lab Chip 19(5), 875–884 (2019).
[Crossref]

Malachowski, K.

K. Malachowski, M. Jamal, Q. Jin, B. Polat, C. J. Morris, and D. H. Gracias, “Self-Folding Single Cell Grippers,” Nano Lett. 14(7), 4164–4170 (2014).
[Crossref]

Marcos, R.H.W.

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Q.D. Tran, T.F. Kong, D. Hu, R.H.W. Marcos, and Lam, “Deterministic sequential isolation of floating cancer cells under continuous flow,” Lab Chip 16(15), 2813–2819 (2016).
[Crossref]

Miller-Graziano, C.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Mindrinos, M. N.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Misra, R.

S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
[Crossref]

Misra, S.

S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
[Crossref]

Mohamad, A. A.

M. Azarmanesh, M. Dejam, P. Azizian, G. Yesiloz, A. A. Mohamad, and A. Sanati-Nezhad, “Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells,” Sci. Rep. 9(1), 6723 (2019).
[Crossref]

Moldawer, L. L.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Morris, C. J.

K. Malachowski, M. Jamal, Q. Jin, B. Polat, C. J. Morris, and D. H. Gracias, “Self-Folding Single Cell Grippers,” Nano Lett. 14(7), 4164–4170 (2014).
[Crossref]

Müller, L.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Mushtaq, F.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Nelson, B. J.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Ni, J.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

Ni, J. C.

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Nie, G.

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Nong, Q.

Q. Nong, X. Chen, L. Hu, Y. Huang, T. Luan, H. Liu, and B. Chen, “Identification and characterization of Gd-binding proteins in NIH-3T3 cells,” Talanta 219, 121281 (2020).
[Crossref]

Noshari, J.

S. Shim, K. Stemke-Hale, J. Noshari, F. F. Becker, and P. R. C. Gascoyne, “Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems,” Biomicrofluidics 7(1), 011808 (2013).
[Crossref]

Obata, K.

K. Obata, A. EI-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Pan, D.

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Pané, S.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Pareek, P.

S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
[Crossref]

Park, S.

S. Park, Y. Zhang, T. H. Wang, and S. Yang, “Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity,” Lab Chip 11(17), 2893–2900 (2011).
[Crossref]

Park, S. J.

M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, and A. J. Hart, “Diverse 3D microarchitectures made by capillary forming of carbon nanotubes,” Adv. Mater. 22(39), 4384–4389 (2010).
[Crossref]

Paul, O.

F. Larramendy, S. Yoshida, D. Maier, Z. Fekete, S. Takeuchi, and O. Paul, “3D arrays of microcages by two-photon lithography for spatial organization of living cells,” Lab Chip 19(5), 875–884 (2019).
[Crossref]

Petritis, B. O.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Polat, B.

K. Malachowski, M. Jamal, Q. Jin, B. Polat, C. J. Morris, and D. H. Gracias, “Self-Folding Single Cell Grippers,” Nano Lett. 14(7), 4164–4170 (2014).
[Crossref]

Puigmartí-Luis, J.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Purohit, P.

S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
[Crossref]

Qi, F.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[Crossref]

Qi, J.

Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
[Crossref]

Qian, W. J.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Ren, J.

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Rohrbach, A.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref]

Rosenbach, A. E.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Russom, A.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Samanta, A. K.

W. J. Tao, H. Lin, T. Sun, A. K. Samanta, and R. Arlinghaus, “BCR-ABL oncogenic transformation of NIH 3T3 fibroblasts requires the IL-3 receptor,” Oncogene 27(22), 3194–3200 (2008).
[Crossref]

Sanati-Nezhad, A.

M. Azarmanesh, M. Dejam, P. Azizian, G. Yesiloz, A. A. Mohamad, and A. Sanati-Nezhad, “Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells,” Sci. Rep. 9(1), 6723 (2019).
[Crossref]

Sharma, P.

S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
[Crossref]

Shen, Q. D.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Shi, Y.

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

Shim, S.

S. Shim, K. Stemke-Hale, J. Noshari, F. F. Becker, and P. R. C. Gascoyne, “Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems,” Biomicrofluidics 7(1), 011808 (2013).
[Crossref]

Shin, J.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Siegel, R. L.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: Cancer J. Clin. 68(6), 394–424 (2018).
[Crossref]

Smith, R. D.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Smith, Z. J.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

Soerjomataram, I.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: Cancer J. Clin. 68(6), 394–424 (2018).
[Crossref]

Stemke-Hale, K.

S. Shim, K. Stemke-Hale, J. Noshari, F. F. Becker, and P. R. C. Gascoyne, “Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems,” Biomicrofluidics 7(1), 011808 (2013).
[Crossref]

Sugioka, K.

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

Sun, D.

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref]

Sun, H. B.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

Sun, J.

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Sun, M.

W. Chen, M. Sun, X. Fan, and H. Xie, “Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release,” Appl. Mater. Today 19, 100583 (2020).
[Crossref]

Sun, T.

T. Sun, J. Kovac, and J. Voldman, “Image-based single-cell sorting via dual-photopolymerized microwell arrays,” Anal. Chem. 86(2), 977–981 (2014).
[Crossref]

W. J. Tao, H. Lin, T. Sun, A. K. Samanta, and R. Arlinghaus, “BCR-ABL oncogenic transformation of NIH 3T3 fibroblasts requires the IL-3 receptor,” Oncogene 27(22), 3194–3200 (2008).
[Crossref]

Sun, Y.

S. Cui, Y. Liu, W. Wang, Y. Sun, and Y. Fan, “A microfluidic chip for highly efficient cell capturing and pairing,” Biomicrofluidics 5(3), 032003 (2011).
[Crossref]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

Takeuchi, S.

F. Larramendy, S. Yoshida, D. Maier, Z. Fekete, S. Takeuchi, and O. Paul, “3D arrays of microcages by two-photon lithography for spatial organization of living cells,” Lab Chip 19(5), 875–884 (2019).
[Crossref]

Tan, D.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[Crossref]

Tan, Y.

Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
[Crossref]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

Tao, W. J.

W. J. Tao, H. Lin, T. Sun, A. K. Samanta, and R. Arlinghaus, “BCR-ABL oncogenic transformation of NIH 3T3 fibroblasts requires the IL-3 receptor,” Oncogene 27(22), 3194–3200 (2008).
[Crossref]

Tawfick, S. H.

M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, and A. J. Hart, “Diverse 3D microarchitectures made by capillary forming of carbon nanotubes,” Adv. Mater. 22(39), 4384–4389 (2010).
[Crossref]

Tay, B.Z.

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Terzopoulou, A.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Tian, F.

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Tompkins, R. G.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Toner, M.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Torlakcik, H.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Torre, L. A.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: Cancer J. Clin. 68(6), 394–424 (2018).
[Crossref]

Tran, Q.D.

Q.D. Tran, T.F. Kong, D. Hu, R.H.W. Marcos, and Lam, “Deterministic sequential isolation of floating cancer cells under continuous flow,” Lab Chip 16(15), 2813–2819 (2016).
[Crossref]

Valastyan, S.

S. Valastyan and R. A. Weinberg, “Tumor metastasis: Molecular insights and evolving paradigms,” Cell 147(2), 275–292 (2011).
[Crossref]

Vishnoi, J. R.

S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
[Crossref]

Voldman, J.

T. Sun, J. Kovac, and J. Voldman, “Image-based single-cell sorting via dual-photopolymerized microwell arrays,” Anal. Chem. 86(2), 977–981 (2014).
[Crossref]

Wadle, S.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref]

Wang, C. H.

Y. S. Chen, K. C. Chung, W. Y. Huang, W. Bin Lee, C. Y. Fu, C. H. Wang, and G. Bin Lee, “Generating digital drug cocktails: Via optical manipulation of drug-containing particles and photo-patterning of hydrogels,” Lab Chip 19(10), 1764–1771 (2019).
[Crossref]

Wang, D.

Q. Geng, D. Wang, P. Chen, and S. C. Chen, “Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization,” Nat. Commun. 10(1), 2179 (2019).
[Crossref]

Wang, P.

Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
[Crossref]

Wang, R. Y.

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Wang, T. H.

S. Park, Y. Zhang, T. H. Wang, and S. Yang, “Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity,” Lab Chip 11(17), 2893–2900 (2011).
[Crossref]

Wang, W.

S. Cui, Y. Liu, W. Wang, Y. Sun, and Y. Fan, “A microfluidic chip for highly efficient cell capturing and pairing,” Biomicrofluidics 5(3), 032003 (2011).
[Crossref]

Wang, X.

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref]

Wang, Y.

W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, and L. Liu, “Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening,” Mater. Des. 183, 108182 (2019).
[Crossref]

W. Liang, Y. Zhao, L. Liu, Y. Wang, W.J. Li, and G. Bin Lee, “Determination of Cell Membrane Capacitance and Conductance via Optically Induced Electrokinetics,” Biophys. J. 113(7), 1531–1539 (2017).
[Crossref]

Wang, Z.

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
[Crossref]

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref]

Warner, E. A.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Wei, J.

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Weinberg, R. A.

S. Valastyan and R. A. Weinberg, “Tumor metastasis: Molecular insights and evolving paradigms,” Cell 147(2), 275–292 (2011).
[Crossref]

Whitesides, G.M.

G.M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref]

Wilhelmy, J.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Wu, D.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Xia, H.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Xiao, G.

Xiao, W.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Xie, H.

W. Chen, M. Sun, X. Fan, and H. Xie, “Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release,” Appl. Mater. Today 19, 100583 (2020).
[Crossref]

Xiong, W.

Xu, B.

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Xu, J.

Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
[Crossref]

Xu, W.

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Yan, F.

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Yang, D.

D. Yang, L. P. Liu, Q. H. Gong, and Y. Li, “Rapid Two-photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering,” Macromol. Rapid Commun. 40(8), 1970017 (2019).
[Crossref]

Yang, G. G.

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

Yang, H.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[Crossref]

Yang, N.

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Yang, S.

S. Park, Y. Zhang, T. H. Wang, and S. Yang, “Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity,” Lab Chip 11(17), 2893–2900 (2011).
[Crossref]

Yang, W.

W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, and L. Liu, “Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening,” Mater. Des. 183, 108182 (2019).
[Crossref]

Yesiloz, G.

M. Azarmanesh, M. Dejam, P. Azizian, G. Yesiloz, A. A. Mohamad, and A. Sanati-Nezhad, “Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells,” Sci. Rep. 9(1), 6723 (2019).
[Crossref]

Yoon, E.

J. Chung, Y. J. Kim, and E. Yoon, “Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures,” Appl. Phys. Lett. 98(12), 123701 (2011).
[Crossref]

Yoshida, S.

F. Larramendy, S. Yoshida, D. Maier, Z. Fekete, S. Takeuchi, and O. Paul, “3D arrays of microcages by two-photon lithography for spatial organization of living cells,” Lab Chip 19(5), 875–884 (2019).
[Crossref]

Yu, H.

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, and L. Liu, “Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening,” Mater. Des. 183, 108182 (2019).
[Crossref]

Yuan, Z.

W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, and L. Liu, “Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening,” Mater. Des. 183, 108182 (2019).
[Crossref]

Zhang, C. C.

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Zhang, L.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

Zhang, Y.

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

S. Park, Y. Zhang, T. H. Wang, and S. Yang, “Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity,” Lab Chip 11(17), 2893–2900 (2011).
[Crossref]

Zhang, Y. L.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Zhang, Z.

Z. Zhang, T. E. P. Kimkes, and M. Heinemann, “Manipulating rod-shaped bacteria with optical tweezers,” Sci. Rep. 9(1), 19086 (2019).
[Crossref]

Zhao, J.

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

Zhao, Y.

W. Liang, Y. Zhao, L. Liu, Y. Wang, W.J. Li, and G. Bin Lee, “Determination of Cell Membrane Capacitance and Conductance via Optically Induced Electrokinetics,” Biophys. J. 113(7), 1531–1539 (2017).
[Crossref]

Zhao, Z. Z.

M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, and A. J. Hart, “Diverse 3D microarchitectures made by capillary forming of carbon nanotubes,” Adv. Mater. 22(39), 4384–4389 (2010).
[Crossref]

Zheng, Y.

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. M. Jin, J. Y. Kim, M. Heo, S. J. Jeong, B. H. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS,” ACS Appl. Mater. Interfaces 10(51), 44660–44667 (2018).
[Crossref]

ACS Nano (1)

C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie, and J. Sun, “Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows,” ACS Nano 11(7), 6968–6976 (2017).
[Crossref]

Adv. Funct. Mater. (1)

Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z. J. Smith, J. Li, L. Zhang, D. Wu, and J. Chu, “Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS,” Adv. Funct. Mater. 30(15), 1909467 (2020).
[Crossref]

Adv. Mater. (1)

M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, and A. J. Hart, “Diverse 3D microarchitectures made by capillary forming of carbon nanotubes,” Adv. Mater. 22(39), 4384–4389 (2010).
[Crossref]

Anal. Chem. (1)

T. Sun, J. Kovac, and J. Voldman, “Image-based single-cell sorting via dual-photopolymerized microwell arrays,” Anal. Chem. 86(2), 977–981 (2014).
[Crossref]

Appl. Mater. Today (1)

W. Chen, M. Sun, X. Fan, and H. Xie, “Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release,” Appl. Mater. Today 19, 100583 (2020).
[Crossref]

Appl. Phys. Lett. (2)

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[Crossref]

J. Chung, Y. J. Kim, and E. Yoon, “Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures,” Appl. Phys. Lett. 98(12), 123701 (2011).
[Crossref]

Biomicrofluidics (2)

S. Cui, Y. Liu, W. Wang, Y. Sun, and Y. Fan, “A microfluidic chip for highly efficient cell capturing and pairing,” Biomicrofluidics 5(3), 032003 (2011).
[Crossref]

S. Shim, K. Stemke-Hale, J. Noshari, F. F. Becker, and P. R. C. Gascoyne, “Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems,” Biomicrofluidics 7(1), 011808 (2013).
[Crossref]

Biophys. J. (2)

W. Liang, Y. Zhao, L. Liu, Y. Wang, W.J. Li, and G. Bin Lee, “Determination of Cell Membrane Capacitance and Conductance via Optically Induced Electrokinetics,” Biophys. J. 113(7), 1531–1539 (2017).
[Crossref]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref]

CA: Cancer J. Clin. (1)

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: Cancer J. Clin. 68(6), 394–424 (2018).
[Crossref]

Cell (1)

S. Valastyan and R. A. Weinberg, “Tumor metastasis: Molecular insights and evolving paradigms,” Cell 147(2), 275–292 (2011).
[Crossref]

Indian J. Clin. Biochem. (1)

S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J. R. Vishnoi, P. Pareek, S. Misra, and P. Sharma, “Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis,” Indian J. Clin. Biochem. 34(1), 3–18 (2019).
[Crossref]

Lab Chip (8)

F. Larramendy, S. Yoshida, D. Maier, Z. Fekete, S. Takeuchi, and O. Paul, “3D arrays of microcages by two-photon lithography for spatial organization of living cells,” Lab Chip 19(5), 875–884 (2019).
[Crossref]

Q.D. Tran, T.F. Kong, D. Hu, R.H.W. Marcos, and Lam, “Deterministic sequential isolation of floating cancer cells under continuous flow,” Lab Chip 16(15), 2813–2819 (2016).
[Crossref]

J. Li, Y. Liu, J. Ren, B.Z. Tay, T. Luo, L. Fan, D. Sun, G. Luo, D. Lau, R.H.W. Marcos, and Lam, “Antibody-coated microstructures for selective isolation of immune cells in blood,” Lab Chip 20(6), 1072–1082 (2020).
[Crossref]

Y. S. Chen, K. C. Chung, W. Y. Huang, W. Bin Lee, C. Y. Fu, C. H. Wang, and G. Bin Lee, “Generating digital drug cocktails: Via optical manipulation of drug-containing particles and photo-patterning of hydrogels,” Lab Chip 19(10), 1764–1771 (2019).
[Crossref]

S. Park, Y. Zhang, T. H. Wang, and S. Yang, “Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity,” Lab Chip 11(17), 2893–2900 (2011).
[Crossref]

B. Xu, Y. Shi, Z. Lao, J. Ni, G. Li, Y. Hu, J. Li, J. Chu, D. Wu, and K. Sugioka, “Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging,” Lab Chip 18(3), 442–450 (2018).
[Crossref]

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref]

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref]

Light Sci. Appl. (1)

K. Obata, A. EI-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Macromol. Rapid Commun. (1)

D. Yang, L. P. Liu, Q. H. Gong, and Y. Li, “Rapid Two-photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering,” Macromol. Rapid Commun. 40(8), 1970017 (2019).
[Crossref]

Mater. Des. (1)

W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, and L. Liu, “Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening,” Mater. Des. 183, 108182 (2019).
[Crossref]

Mater. Horiz. (1)

X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson, and S. Pané, “Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation,” Mater. Horiz. 6(7), 1512–1516 (2019).
[Crossref]

Nano Lett. (1)

K. Malachowski, M. Jamal, Q. Jin, B. Polat, C. J. Morris, and D. H. Gracias, “Self-Folding Single Cell Grippers,” Nano Lett. 14(7), 4164–4170 (2014).
[Crossref]

Nano Today (1)

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Nat. Commun. (1)

Q. Geng, D. Wang, P. Chen, and S. C. Chen, “Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization,” Nat. Commun. 10(1), 2179 (2019).
[Crossref]

Nat. Med. (1)

K. T. Kotz, W. Xiao, C. Miller-Graziano, W. J. Qian, A. Russom, E. A. Warner, L. L. Moldawer, A. De, P. E. Bankey, B. O. Petritis, D. G. Camp, A. E. Rosenbach, J. Goverman, S. P. Fagan, B. H. Brownstein, D. Irimia, W. Xu, J. Wilhelmy, M. N. Mindrinos, R. D. Smith, R. W. Davis, R. G. Tompkins, and M. Toner, “Clinical microfluidics for neutrophil genomics and proteomics,” Nat. Med. 16(9), 1042–1047 (2010).
[Crossref]

Nature (3)

G.M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref]

Oncogene (1)

W. J. Tao, H. Lin, T. Sun, A. K. Samanta, and R. Arlinghaus, “BCR-ABL oncogenic transformation of NIH 3T3 fibroblasts requires the IL-3 receptor,” Oncogene 27(22), 3194–3200 (2008).
[Crossref]

Opt. Express (1)

Phys. Scr. (1)

Y. Tan, W. Chu, P. Wang, W. Li, J. Qi, J. Xu, Z. Wang, and Y. Cheng, “High-throughput multi-resolution three dimensional laser printing,” Phys. Scr. 94(1), 015501 (2019).
[Crossref]

Sci. Adv. (1)

Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. Bin Lee, L. Liu, W. J. Li, and Z. Wang, “Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK),” Sci. Adv. 6(32), eaba9628 (2020).
[Crossref]

Sci. Rep. (2)

M. Azarmanesh, M. Dejam, P. Azizian, G. Yesiloz, A. A. Mohamad, and A. Sanati-Nezhad, “Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells,” Sci. Rep. 9(1), 6723 (2019).
[Crossref]

Z. Zhang, T. E. P. Kimkes, and M. Heinemann, “Manipulating rod-shaped bacteria with optical tweezers,” Sci. Rep. 9(1), 19086 (2019).
[Crossref]

Small (1)

Z. X. Lao, Y. L. Hu, D. Pan, R. Y. Wang, C. C. Zhang, J. C. Ni, B. Xu, J. W. Li, D. Wu, and J. R. Chu, “Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly,” Small 13(23), 1603957 (2017).
[Crossref]

Talanta (1)

Q. Nong, X. Chen, L. Hu, Y. Huang, T. Luan, H. Liu, and B. Chen, “Identification and characterization of Gd-binding proteins in NIH-3T3 cells,” Talanta 219, 121281 (2020).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1       Anisotropic capture of SiO2 microspheres by microcage array
» Visualization 2       Optical tweezers to manipulate a single NIH-3T3 cell
» Visualization 3       Selective capture of single NIH-3T3 cell

Data availability

No data were generated or analyzed in the presented research.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Two-photon polymerization (TPP) processing with optical tweezer (OT) operating system. (a) Schematic of microstructure fabrication and microsphere capture via TPP and OTs. (b) Micropillar arrays fabricated via femtosecond laser TPP. (c) Self-assembly of microcage arrays driven by capillary forces occurs between adjacent micropillars. (d) Process of trapping polystyrene (PS) microspheres using OTs. Scale bars: 15 μm.
Fig. 2.
Fig. 2. Characterization and analysis of micropillars with different heights and diameters. (a) and (b) Micropillar arrays processed at 0.4 W power with heights of (a) 10 μm and (b) 30 μm. Scale bars: 50 μm. The insets show SEM images of a single micropillar. Scale bars: 5 μm. (c) and (d) Dependence of the actual micropillar processing height and diameter on the theoretical setting height at power levels of 0.4, 0.6, and 0.8 W.
Fig. 3.
Fig. 3. Principle analysis and microsphere operation of optical tweezers. (a) Qualitative view of microsphere trapping by the optical tweezer. (b)–(d) Trajectory of particles operated via optical tweezers. The motion states are initial position (b), moving path (c), and target position (d). Scale bars: 10 μm.
Fig. 4.
Fig. 4. Diverse ordered self-assembled microstructure fabrication and analysis. (a) Schematic of the capillary-force-driven self-assembly process of micropillars. (b)–(d) Self-assembly microstructures composed of multiple micropillars. The numbers of micropillars are (b) three, (c) four, and (d) five. Scale bars: 20 μm. (e) “SIA” logo patterning through self-assembly microstructures composed of four micropillars. Scale bars: 50 μm.
Fig. 5.
Fig. 5. OTs manipulate microspheres for microcage capture. (a) 3D schematic of microcage capturing microspheres. Anisotropic capture of a single microsphere by microcages with (b) three and (c) four pillars. (d) A single microcage captures both microspheres simultaneously. Scale bars: 5 μm. Anisotropy of a single microsphere captured by a microcage array with (e) three and (f) four pillars. Scale bars: 20 μm.
Fig. 6.
Fig. 6. Single-cell manipulation and capture. (a) Optical image of the four-pillar microcage array. Fluorescence images of NIH-3T3 cell distribution in microcage arrays with (b) four and (c) three pillars. Scale bars: 50 μm. Relative distribution of a single NIH-3T3 cell and microcage (d) before and (e) after capture. (f) SEM image of a single NIH-3T3 cell in the microcage after capture. Scale bars: 10 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E = N N ,

Metrics