Abstract

Spatial optical Fourier filtering is a widespread technique for in situ image or light field processing. However, conventional fixed absorbing patterns or mechanical irises only allow an inflexible, very restricted control. Thus, we present two electrochromic spatial filters with ring-shaped or directional segments, which can be individually addressed and continuously tuned in transmission resulting in up to 512 different filtering states. For realization of the electrochromic devices, we overcome technical obstacles to realize seamless, gap-free electrochromic segments. We describe this novel fabrication process and demonstrate the successful application in an optical Fourier transform set-up.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Electrochromic graduated filters with symmetric electrode configuration

Alexander Hein, Nikolas Longen, Frederike Carl, Jonas Klein, Markus Haase, Roman Stoll, Renate Warmers, Gerald Jenke, Christoph Gimmler, Theo Schotten, Michael Haag-Pichl, and Egbert Oesterschulze
Opt. Express 28(11) 17047-17055 (2020)

High contrast electrochromic iris

T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze
Opt. Express 23(24) 31544-31549 (2015)

Spatial distribution of gas-phase synthesized germanium nanoparticle volume-fraction and temperature using combined in situ line-of-sight emission and extinction spectroscopy

Guannan Liu, Muhammad Asif, Jan Menser, Thomas Dreier, Khadijeh Mohri, Christof Schulz, and Torsten Endres
Opt. Express 29(6) 8387-8406 (2021)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (WH Freeman, 2017), 4th ed.
  2. G. Zhou, H. Yu, Y. Du, and F. S. Chau, “Microelectromechanical-systems-driven two-layer rotary-blade-based adjustable iris diaphragm,” Opt. Lett. 37(10), 1745–1747 (2012).
    [Crossref]
  3. Y. Hongbin, Z. Guangya, D. Yu, M. Xiaojing, and S. C. Fook, “MEMS-Based Tunable Iris Diaphragm,” J. Microelectromech. Syst. 21(5), 1136–1145 (2012).
    [Crossref]
  4. P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
    [Crossref]
  5. S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
    [Crossref]
  6. P. Müller, R. Feuerstein, and H. Zappe, “Integrated Optofluidic Iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
    [Crossref]
  7. P. M. S. Monk, D. R. Rosseinsky, and R. J. Mortimer, Electrochromic Materials and Devices (Wiley-VHC, 2015).
  8. T. Deutschmann and E. Oesterschulze, “Micro-structured electrochromic device based on poly(3, 4-ethylenedioxythiophene),” J. Micromech. Microeng. 23(6), 065032 (2013).
    [Crossref]
  9. T. Deutschmann and E. Oesterschulze, “Integrated electrochromic iris device for low power and space-limited applications,” J. Opt. 16(7), 075301 (2014).
    [Crossref]
  10. D. Pätz, T. Deutschmann, E. Oesterschulze, and S. Sinzinger, “Depth of focus analysis of optical systems using tunable aperture stops with a moderate level of absorption,” Appl. Opt. 53(28), 6508–6512 (2014).
    [Crossref]
  11. T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze, “High contrast electrochromic iris,” Opt. Express 23(24), 31544–31549 (2015).
    [Crossref]
  12. F. Campus, P. Bonhote, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
    [Crossref]
  13. P. Bonhote, E. Gogniat, F. Campus, L. Walder, and M. Grätzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
    [Crossref]
  14. M. Möller, S. Asaftei, D. Corr, M. Ryan, and L. Walder, “Switchable Electrochromic Images Based on a Combined Top-Down Bottom-Up Approach,” Adv. Mater. 16(17), 1558–1562 (2004).
    [Crossref]
  15. A. Chaudhary, D. Pathak, S. Mishra, P. Yogi, P. Sagdeo, and R. Kumar, “Enhancing Viologen’s Electrochromism by Incorporating Thiophene: A Step Toward All-Organic Flexible Device,” Phys. Status Solidi A 216(2), 1800680 (2018).
    [Crossref]
  16. A. Chaudhary, D. Pathak, M. Tanwar, P. Sagdeo, and R. Kumar, “Prussian Blue-Viologen Inorganic-Organic Hybrid Blend for Improved Electrochromic Performance,” ACS Appl. Electron. Mater. 1(6), 892–899 (2019).
    [Crossref]
  17. A. Chaudhary, D. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, and R. Kumar, “Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device,” ACS Appl. Electron. Mater. 2(6), 1768–1773 (2020).
    [Crossref]
  18. D. Pathak, A. Chaudhary, M. Tanwar, U. Goutam, and R. Kumar, “Nano-cobalt oxide/viologen hybrid solid state device: electrochromism beyond chemical cell,” Appl. Phys. Lett. 116(14), 141901 (2020).
    [Crossref]
  19. C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
    [Crossref]
  20. A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
    [Crossref]
  21. E. Hecht, Optics (Addison Wesley, 2002), 4th ed.
  22. A. Hein, N. Longen, C. Kortz, F. Carl, J. Klein, M. Haase, and E. Oesterschulze, “Two-dimensional spatial image control using an electrochromic graduated filter with multiple electrode configuration,” Sol. Energy Mater. Sol. Cells 10, 4874 (2020).
    [Crossref]

2020 (3)

A. Chaudhary, D. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, and R. Kumar, “Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device,” ACS Appl. Electron. Mater. 2(6), 1768–1773 (2020).
[Crossref]

D. Pathak, A. Chaudhary, M. Tanwar, U. Goutam, and R. Kumar, “Nano-cobalt oxide/viologen hybrid solid state device: electrochromism beyond chemical cell,” Appl. Phys. Lett. 116(14), 141901 (2020).
[Crossref]

A. Hein, N. Longen, C. Kortz, F. Carl, J. Klein, M. Haase, and E. Oesterschulze, “Two-dimensional spatial image control using an electrochromic graduated filter with multiple electrode configuration,” Sol. Energy Mater. Sol. Cells 10, 4874 (2020).
[Crossref]

2019 (3)

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
[Crossref]

A. Chaudhary, D. Pathak, M. Tanwar, P. Sagdeo, and R. Kumar, “Prussian Blue-Viologen Inorganic-Organic Hybrid Blend for Improved Electrochromic Performance,” ACS Appl. Electron. Mater. 1(6), 892–899 (2019).
[Crossref]

2018 (1)

A. Chaudhary, D. Pathak, S. Mishra, P. Yogi, P. Sagdeo, and R. Kumar, “Enhancing Viologen’s Electrochromism by Incorporating Thiophene: A Step Toward All-Organic Flexible Device,” Phys. Status Solidi A 216(2), 1800680 (2018).
[Crossref]

2016 (1)

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

2015 (1)

2014 (2)

T. Deutschmann and E. Oesterschulze, “Integrated electrochromic iris device for low power and space-limited applications,” J. Opt. 16(7), 075301 (2014).
[Crossref]

D. Pätz, T. Deutschmann, E. Oesterschulze, and S. Sinzinger, “Depth of focus analysis of optical systems using tunable aperture stops with a moderate level of absorption,” Appl. Opt. 53(28), 6508–6512 (2014).
[Crossref]

2013 (1)

T. Deutschmann and E. Oesterschulze, “Micro-structured electrochromic device based on poly(3, 4-ethylenedioxythiophene),” J. Micromech. Microeng. 23(6), 065032 (2013).
[Crossref]

2012 (3)

P. Müller, R. Feuerstein, and H. Zappe, “Integrated Optofluidic Iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

G. Zhou, H. Yu, Y. Du, and F. S. Chau, “Microelectromechanical-systems-driven two-layer rotary-blade-based adjustable iris diaphragm,” Opt. Lett. 37(10), 1745–1747 (2012).
[Crossref]

Y. Hongbin, Z. Guangya, D. Yu, M. Xiaojing, and S. C. Fook, “MEMS-Based Tunable Iris Diaphragm,” J. Microelectromech. Syst. 21(5), 1136–1145 (2012).
[Crossref]

2010 (1)

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

2004 (1)

M. Möller, S. Asaftei, D. Corr, M. Ryan, and L. Walder, “Switchable Electrochromic Images Based on a Combined Top-Down Bottom-Up Approach,” Adv. Mater. 16(17), 1558–1562 (2004).
[Crossref]

1999 (2)

F. Campus, P. Bonhote, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

P. Bonhote, E. Gogniat, F. Campus, L. Walder, and M. Grätzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

Asaftei, S.

M. Möller, S. Asaftei, D. Corr, M. Ryan, and L. Walder, “Switchable Electrochromic Images Based on a Combined Top-Down Bottom-Up Approach,” Adv. Mater. 16(17), 1558–1562 (2004).
[Crossref]

Bonhote, P.

F. Campus, P. Bonhote, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

P. Bonhote, E. Gogniat, F. Campus, L. Walder, and M. Grätzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

Campus, F.

P. Bonhote, E. Gogniat, F. Campus, L. Walder, and M. Grätzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

F. Campus, P. Bonhote, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

Carl, F.

A. Hein, N. Longen, C. Kortz, F. Carl, J. Klein, M. Haase, and E. Oesterschulze, “Two-dimensional spatial image control using an electrochromic graduated filter with multiple electrode configuration,” Sol. Energy Mater. Sol. Cells 10, 4874 (2020).
[Crossref]

Chau, F. S.

Chaudhary, A.

A. Chaudhary, D. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, and R. Kumar, “Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device,” ACS Appl. Electron. Mater. 2(6), 1768–1773 (2020).
[Crossref]

D. Pathak, A. Chaudhary, M. Tanwar, U. Goutam, and R. Kumar, “Nano-cobalt oxide/viologen hybrid solid state device: electrochromism beyond chemical cell,” Appl. Phys. Lett. 116(14), 141901 (2020).
[Crossref]

A. Chaudhary, D. Pathak, M. Tanwar, P. Sagdeo, and R. Kumar, “Prussian Blue-Viologen Inorganic-Organic Hybrid Blend for Improved Electrochromic Performance,” ACS Appl. Electron. Mater. 1(6), 892–899 (2019).
[Crossref]

A. Chaudhary, D. Pathak, S. Mishra, P. Yogi, P. Sagdeo, and R. Kumar, “Enhancing Viologen’s Electrochromism by Incorporating Thiophene: A Step Toward All-Organic Flexible Device,” Phys. Status Solidi A 216(2), 1800680 (2018).
[Crossref]

Ciobanu, M.

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

Corr, D.

M. Möller, S. Asaftei, D. Corr, M. Ryan, and L. Walder, “Switchable Electrochromic Images Based on a Combined Top-Down Bottom-Up Approach,” Adv. Mater. 16(17), 1558–1562 (2004).
[Crossref]

Deutschmann, T.

T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze, “High contrast electrochromic iris,” Opt. Express 23(24), 31544–31549 (2015).
[Crossref]

T. Deutschmann and E. Oesterschulze, “Integrated electrochromic iris device for low power and space-limited applications,” J. Opt. 16(7), 075301 (2014).
[Crossref]

D. Pätz, T. Deutschmann, E. Oesterschulze, and S. Sinzinger, “Depth of focus analysis of optical systems using tunable aperture stops with a moderate level of absorption,” Appl. Opt. 53(28), 6508–6512 (2014).
[Crossref]

T. Deutschmann and E. Oesterschulze, “Micro-structured electrochromic device based on poly(3, 4-ethylenedioxythiophene),” J. Micromech. Microeng. 23(6), 065032 (2013).
[Crossref]

Dreesen, L.

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Du, Y.

Feuerstein, R.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated Optofluidic Iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

Fook, S. C.

Y. Hongbin, Z. Guangya, D. Yu, M. Xiaojing, and S. C. Fook, “MEMS-Based Tunable Iris Diaphragm,” J. Microelectromech. Syst. 21(5), 1136–1145 (2012).
[Crossref]

Ghosh, T.

A. Chaudhary, D. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, and R. Kumar, “Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device,” ACS Appl. Electron. Mater. 2(6), 1768–1773 (2020).
[Crossref]

Gogniat, E.

P. Bonhote, E. Gogniat, F. Campus, L. Walder, and M. Grätzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (WH Freeman, 2017), 4th ed.

Goutam, U.

D. Pathak, A. Chaudhary, M. Tanwar, U. Goutam, and R. Kumar, “Nano-cobalt oxide/viologen hybrid solid state device: electrochromism beyond chemical cell,” Appl. Phys. Lett. 116(14), 141901 (2020).
[Crossref]

Grätzel, M.

F. Campus, P. Bonhote, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

P. Bonhote, E. Gogniat, F. Campus, L. Walder, and M. Grätzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

Guangya, Z.

Y. Hongbin, Z. Guangya, D. Yu, M. Xiaojing, and S. C. Fook, “MEMS-Based Tunable Iris Diaphragm,” J. Microelectromech. Syst. 21(5), 1136–1145 (2012).
[Crossref]

Haase, M.

A. Hein, N. Longen, C. Kortz, F. Carl, J. Klein, M. Haase, and E. Oesterschulze, “Two-dimensional spatial image control using an electrochromic graduated filter with multiple electrode configuration,” Sol. Energy Mater. Sol. Cells 10, 4874 (2020).
[Crossref]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 2002), 4th ed.

Hein, A.

A. Hein, N. Longen, C. Kortz, F. Carl, J. Klein, M. Haase, and E. Oesterschulze, “Two-dimensional spatial image control using an electrochromic graduated filter with multiple electrode configuration,” Sol. Energy Mater. Sol. Cells 10, 4874 (2020).
[Crossref]

A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
[Crossref]

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

Heinen, S.

F. Campus, P. Bonhote, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

Hongbin, Y.

Y. Hongbin, Z. Guangya, D. Yu, M. Xiaojing, and S. C. Fook, “MEMS-Based Tunable Iris Diaphragm,” J. Microelectromech. Syst. 21(5), 1136–1145 (2012).
[Crossref]

Kandpal, S.

A. Chaudhary, D. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, and R. Kumar, “Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device,” ACS Appl. Electron. Mater. 2(6), 1768–1773 (2020).
[Crossref]

Klein, J.

A. Hein, N. Longen, C. Kortz, F. Carl, J. Klein, M. Haase, and E. Oesterschulze, “Two-dimensional spatial image control using an electrochromic graduated filter with multiple electrode configuration,” Sol. Energy Mater. Sol. Cells 10, 4874 (2020).
[Crossref]

Kortz, C.

A. Hein, N. Longen, C. Kortz, F. Carl, J. Klein, M. Haase, and E. Oesterschulze, “Two-dimensional spatial image control using an electrochromic graduated filter with multiple electrode configuration,” Sol. Energy Mater. Sol. Cells 10, 4874 (2020).
[Crossref]

A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
[Crossref]

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze, “High contrast electrochromic iris,” Opt. Express 23(24), 31544–31549 (2015).
[Crossref]

Kumar, R.

A. Chaudhary, D. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, and R. Kumar, “Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device,” ACS Appl. Electron. Mater. 2(6), 1768–1773 (2020).
[Crossref]

D. Pathak, A. Chaudhary, M. Tanwar, U. Goutam, and R. Kumar, “Nano-cobalt oxide/viologen hybrid solid state device: electrochromism beyond chemical cell,” Appl. Phys. Lett. 116(14), 141901 (2020).
[Crossref]

A. Chaudhary, D. Pathak, M. Tanwar, P. Sagdeo, and R. Kumar, “Prussian Blue-Viologen Inorganic-Organic Hybrid Blend for Improved Electrochromic Performance,” ACS Appl. Electron. Mater. 1(6), 892–899 (2019).
[Crossref]

A. Chaudhary, D. Pathak, S. Mishra, P. Yogi, P. Sagdeo, and R. Kumar, “Enhancing Viologen’s Electrochromism by Incorporating Thiophene: A Step Toward All-Organic Flexible Device,” Phys. Status Solidi A 216(2), 1800680 (2018).
[Crossref]

Longen, N.

A. Hein, N. Longen, C. Kortz, F. Carl, J. Klein, M. Haase, and E. Oesterschulze, “Two-dimensional spatial image control using an electrochromic graduated filter with multiple electrode configuration,” Sol. Energy Mater. Sol. Cells 10, 4874 (2020).
[Crossref]

Mishra, S.

A. Chaudhary, D. Pathak, S. Mishra, P. Yogi, P. Sagdeo, and R. Kumar, “Enhancing Viologen’s Electrochromism by Incorporating Thiophene: A Step Toward All-Organic Flexible Device,” Phys. Status Solidi A 216(2), 1800680 (2018).
[Crossref]

Möller, M.

M. Möller, S. Asaftei, D. Corr, M. Ryan, and L. Walder, “Switchable Electrochromic Images Based on a Combined Top-Down Bottom-Up Approach,” Adv. Mater. 16(17), 1558–1562 (2004).
[Crossref]

Mönch, W.

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Monk, P. M. S.

P. M. S. Monk, D. R. Rosseinsky, and R. J. Mortimer, Electrochromic Materials and Devices (Wiley-VHC, 2015).

Mortimer, R. J.

P. M. S. Monk, D. R. Rosseinsky, and R. J. Mortimer, Electrochromic Materials and Devices (Wiley-VHC, 2015).

Müller, P.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated Optofluidic Iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Oesterschulze, E.

A. Hein, N. Longen, C. Kortz, F. Carl, J. Klein, M. Haase, and E. Oesterschulze, “Two-dimensional spatial image control using an electrochromic graduated filter with multiple electrode configuration,” Sol. Energy Mater. Sol. Cells 10, 4874 (2020).
[Crossref]

A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
[Crossref]

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze, “High contrast electrochromic iris,” Opt. Express 23(24), 31544–31549 (2015).
[Crossref]

D. Pätz, T. Deutschmann, E. Oesterschulze, and S. Sinzinger, “Depth of focus analysis of optical systems using tunable aperture stops with a moderate level of absorption,” Appl. Opt. 53(28), 6508–6512 (2014).
[Crossref]

T. Deutschmann and E. Oesterschulze, “Integrated electrochromic iris device for low power and space-limited applications,” J. Opt. 16(7), 075301 (2014).
[Crossref]

T. Deutschmann and E. Oesterschulze, “Micro-structured electrochromic device based on poly(3, 4-ethylenedioxythiophene),” J. Micromech. Microeng. 23(6), 065032 (2013).
[Crossref]

Pathak, D.

D. Pathak, A. Chaudhary, M. Tanwar, U. Goutam, and R. Kumar, “Nano-cobalt oxide/viologen hybrid solid state device: electrochromism beyond chemical cell,” Appl. Phys. Lett. 116(14), 141901 (2020).
[Crossref]

A. Chaudhary, D. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, and R. Kumar, “Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device,” ACS Appl. Electron. Mater. 2(6), 1768–1773 (2020).
[Crossref]

A. Chaudhary, D. Pathak, M. Tanwar, P. Sagdeo, and R. Kumar, “Prussian Blue-Viologen Inorganic-Organic Hybrid Blend for Improved Electrochromic Performance,” ACS Appl. Electron. Mater. 1(6), 892–899 (2019).
[Crossref]

A. Chaudhary, D. Pathak, S. Mishra, P. Yogi, P. Sagdeo, and R. Kumar, “Enhancing Viologen’s Electrochromism by Incorporating Thiophene: A Step Toward All-Organic Flexible Device,” Phys. Status Solidi A 216(2), 1800680 (2018).
[Crossref]

Pätz, D.

Petsch, S.

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Rani, C.

A. Chaudhary, D. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, and R. Kumar, “Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device,” ACS Appl. Electron. Mater. 2(6), 1768–1773 (2020).
[Crossref]

Rosseinsky, D. R.

P. M. S. Monk, D. R. Rosseinsky, and R. J. Mortimer, Electrochromic Materials and Devices (Wiley-VHC, 2015).

Ryan, M.

M. Möller, S. Asaftei, D. Corr, M. Ryan, and L. Walder, “Switchable Electrochromic Images Based on a Combined Top-Down Bottom-Up Approach,” Adv. Mater. 16(17), 1558–1562 (2004).
[Crossref]

Sagdeo, P.

A. Chaudhary, D. Pathak, M. Tanwar, P. Sagdeo, and R. Kumar, “Prussian Blue-Viologen Inorganic-Organic Hybrid Blend for Improved Electrochromic Performance,” ACS Appl. Electron. Mater. 1(6), 892–899 (2019).
[Crossref]

A. Chaudhary, D. Pathak, S. Mishra, P. Yogi, P. Sagdeo, and R. Kumar, “Enhancing Viologen’s Electrochromism by Incorporating Thiophene: A Step Toward All-Organic Flexible Device,” Phys. Status Solidi A 216(2), 1800680 (2018).
[Crossref]

Schuhladen, S.

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Sinzinger, S.

Spengler, N.

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Tanwar, M.

A. Chaudhary, D. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, and R. Kumar, “Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device,” ACS Appl. Electron. Mater. 2(6), 1768–1773 (2020).
[Crossref]

D. Pathak, A. Chaudhary, M. Tanwar, U. Goutam, and R. Kumar, “Nano-cobalt oxide/viologen hybrid solid state device: electrochromism beyond chemical cell,” Appl. Phys. Lett. 116(14), 141901 (2020).
[Crossref]

A. Chaudhary, D. Pathak, M. Tanwar, P. Sagdeo, and R. Kumar, “Prussian Blue-Viologen Inorganic-Organic Hybrid Blend for Improved Electrochromic Performance,” ACS Appl. Electron. Mater. 1(6), 892–899 (2019).
[Crossref]

Walder, L.

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze, “High contrast electrochromic iris,” Opt. Express 23(24), 31544–31549 (2015).
[Crossref]

M. Möller, S. Asaftei, D. Corr, M. Ryan, and L. Walder, “Switchable Electrochromic Images Based on a Combined Top-Down Bottom-Up Approach,” Adv. Mater. 16(17), 1558–1562 (2004).
[Crossref]

F. Campus, P. Bonhote, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

P. Bonhote, E. Gogniat, F. Campus, L. Walder, and M. Grätzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

Xiaojing, M.

Y. Hongbin, Z. Guangya, D. Yu, M. Xiaojing, and S. C. Fook, “MEMS-Based Tunable Iris Diaphragm,” J. Microelectromech. Syst. 21(5), 1136–1145 (2012).
[Crossref]

Yogi, P.

A. Chaudhary, D. Pathak, S. Mishra, P. Yogi, P. Sagdeo, and R. Kumar, “Enhancing Viologen’s Electrochromism by Incorporating Thiophene: A Step Toward All-Organic Flexible Device,” Phys. Status Solidi A 216(2), 1800680 (2018).
[Crossref]

Yu, D.

Y. Hongbin, Z. Guangya, D. Yu, M. Xiaojing, and S. C. Fook, “MEMS-Based Tunable Iris Diaphragm,” J. Microelectromech. Syst. 21(5), 1136–1145 (2012).
[Crossref]

Yu, H.

Zappe, H.

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated Optofluidic Iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Zhou, G.

ACS Appl. Electron. Mater. (2)

A. Chaudhary, D. Pathak, M. Tanwar, P. Sagdeo, and R. Kumar, “Prussian Blue-Viologen Inorganic-Organic Hybrid Blend for Improved Electrochromic Performance,” ACS Appl. Electron. Mater. 1(6), 892–899 (2019).
[Crossref]

A. Chaudhary, D. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, and R. Kumar, “Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device,” ACS Appl. Electron. Mater. 2(6), 1768–1773 (2020).
[Crossref]

Adv. Mater. (1)

M. Möller, S. Asaftei, D. Corr, M. Ryan, and L. Walder, “Switchable Electrochromic Images Based on a Combined Top-Down Bottom-Up Approach,” Adv. Mater. 16(17), 1558–1562 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Pathak, A. Chaudhary, M. Tanwar, U. Goutam, and R. Kumar, “Nano-cobalt oxide/viologen hybrid solid state device: electrochromism beyond chemical cell,” Appl. Phys. Lett. 116(14), 141901 (2020).
[Crossref]

Displays (1)

P. Bonhote, E. Gogniat, F. Campus, L. Walder, and M. Grätzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

J. Microelectromech. Syst. (3)

Y. Hongbin, Z. Guangya, D. Yu, M. Xiaojing, and S. C. Fook, “MEMS-Based Tunable Iris Diaphragm,” J. Microelectromech. Syst. 21(5), 1136–1145 (2012).
[Crossref]

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated Optofluidic Iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

J. Micromech. Microeng. (1)

T. Deutschmann and E. Oesterschulze, “Micro-structured electrochromic device based on poly(3, 4-ethylenedioxythiophene),” J. Micromech. Microeng. 23(6), 065032 (2013).
[Crossref]

J. Opt. (1)

T. Deutschmann and E. Oesterschulze, “Integrated electrochromic iris device for low power and space-limited applications,” J. Opt. 16(7), 075301 (2014).
[Crossref]

Light: Sci. Appl. (1)

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Nat. Commun. (1)

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Status Solidi A (1)

A. Chaudhary, D. Pathak, S. Mishra, P. Yogi, P. Sagdeo, and R. Kumar, “Enhancing Viologen’s Electrochromism by Incorporating Thiophene: A Step Toward All-Organic Flexible Device,” Phys. Status Solidi A 216(2), 1800680 (2018).
[Crossref]

Sci. Rep. (1)

A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

F. Campus, P. Bonhote, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

A. Hein, N. Longen, C. Kortz, F. Carl, J. Klein, M. Haase, and E. Oesterschulze, “Two-dimensional spatial image control using an electrochromic graduated filter with multiple electrode configuration,” Sol. Energy Mater. Sol. Cells 10, 4874 (2020).
[Crossref]

Other (3)

E. Hecht, Optics (Addison Wesley, 2002), 4th ed.

J. W. Goodman, Introduction to Fourier Optics (WH Freeman, 2017), 4th ed.

P. M. S. Monk, D. R. Rosseinsky, and R. J. Mortimer, Electrochromic Materials and Devices (Wiley-VHC, 2015).

Supplementary Material (2)

NameDescription
» Supplement 1       Additional information on the spectroelectrochemic performance of the filter, the comparison between static Cr filters and the EC filter and the continous tunability of the transmission
» Visualization 1       The movie shows the ’Gate of Science’ along with the directional EC filter while a sequence of potential combinations is applied in original playback speed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. a) Schematic cross section of a EC device with a structured (bottom) and unstructured ITO electrode (top) and the corresponding EC materials, b) and c) optical images of the EC iris in two different switching states, d) cross section with applied electric potentials resulting in a transfer of the coloration on the lower electrode to the upper electrode, e) and f) optical images of an azimuthally structured spatial EC filter with eight segments and an additional center electrode. In all devices, the distance between adjacent segments of the ITO layer is 50 $\mu$m. Colored segments are addressed with $\Phi _1 = -1.5$ V, transparent segments with $\Phi _2 = +1.5$ V. The optical images were taken with fixed illumination conditions (exposure time 1/13 s, ISO 640) to provide comparability.
Fig. 2.
Fig. 2. Fabrication process of the EC device: a) ITO coated glass substrate, b) sample after Cr/Au deposition and structuring, c) sample after ITO structuring, d) sample with doctor-bladed and sintered nanoparticle layer, e) sample with laminated and structured Ordyl spacer layer, f) encapsulated device with functionalized nanoparticle layers after electrolyte filling and bonding. For structuring, UV-lithography and wet chemical etching was used (see [19] for details). The legend gives the color code for different materials.
Fig. 3.
Fig. 3. Experimental set-up: The object is illuminated by an expanded beam of a HeNe laser, lenses 1 and 2 are operated in the 2f configuration to establish two consecutive Fourier transformations. The EC-filter is placed in the first Fourier plane which is the back focal plane of lens 1.
Fig. 4.
Fig. 4. Optical images of the (a) unfiltered and (b) filtered Siemens star and measured corresponding transmission profiles at the indicated radii (c, d). Both images (a) and (b) were taken in the image plane while all segments of the EC iris were switched to the transparent state in (a) and only the second segment was switched opaque in (b). The $k$-scale in (c) and (d) illustrates the blocked frequency range and the resulting blocked frequency components in the Fourier series at the two exemplary radii.
Fig. 5.
Fig. 5. a) Schematic Fourier pattern (top) of the ’Gate of Science’ (bottom) with correlated directional spatial frequency components in color code, (b - d) optical images of different switching states in the Fourier plane (top) and image plane (bottom). The patterns have 5 line pairs / mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 0 = 72 / ( 2 π r ) .
T ( x ) = A 0 + n = 1 A n cos ( 2 π ( 2 n 1 ) k 0 x ) with: n = 1 , 2 ,

Metrics