Abstract

We report on topography-induced changes of the localized surface plasmon resonance (LSPR) enhanced luminescence of gold tip on SrTiO3 nanostructures with apertureless scanning near-field optical microscopy (aSNOM) in tip-enhanced Raman spectroscopy (TERS) configuration. Our experimental and simulated results indicate that the averaged refractive index of the dielectric environment of the tip apex containing both air and SrTiO3 in variable volume ratios, is dependent on the topography of the sample. This reveals that the local topography has to be taken into consideration as an additional contribution to the position of the LSPR.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sample induced intensity variations of localized surface plasmon resonance in tip-enhanced Raman spectroscopy

Jiawei Zhang, Azza Hadj Youssef, Andreas Dörfler, Gitanjali Kolhatkar, Alexandre Merlen, and Andreas Ruediger
Opt. Express 28(18) 25998-26006 (2020)

Effect of the gold crystallinity on the enhanced luminescence signal of scanning probe tips in apertureless near-field optical microscopy

Gitanjali Kolhatkar, Julien Plathier, Alain Pignolet, and Andreas Ruediger
Opt. Express 25(21) 25929-25937 (2017)

Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light

Nastaran Kazemi-Zanjani, Sylvain Vedraine, and François Lagugné-Labarthet
Opt. Express 21(21) 25271-25276 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. Kang, M. Yang, M. S. Mattei, G. C. Schatz, and R. P. Van Duyne, “In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy,” Nano Lett. 19(3), 2106–2113 (2019).
    [Crossref]
  2. D. M. Mittleman, “Twenty years of terahertz imaging [Invited],” Opt. Express 26(8), 9417–9431 (2018).
    [Crossref]
  3. G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
    [Crossref]
  4. K. Eberhardt, C. Stiebing, C. Matthaus, M. Schmitt, and J. Popp, “Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update,” Expert Rev. Mol. Diagn. 15(6), 773–787 (2015).
    [Crossref]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  6. D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
    [Crossref]
  7. Y. Baba, I. Matsuya, M. Nishikawa, and T. Ishibashi, “Measurement of polarization properties of fifth harmonic signals in apertureless-type scanning near-field optical microscopy,” Jpn. J. Appl. Phys. 57(9S2), 09TC04 (2018).
    [Crossref]
  8. A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
    [Crossref]
  9. G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Ares, and A. Ruediger, “Composition variation in Al-based dilute nitride alloys using apertureless scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
    [Crossref]
  10. M. Nicklaus, G. Kolhatkar, J. Plathier, C. Dab, and A. Ruediger, “Direct Observation of Core-Shell Structures in Individual Lead Titanate Ferroelectric Nanostructures by Tip-Enhanced Refractive Index Mapping,” Adv. Funct. Mater. 29(2), 1806770 (2019).
    [Crossref]
  11. G. Kolhatkar, J. Plathier, and A. Ruediger, “Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy – a review,” J. Mater. Chem. C 6(6), 1307–1319 (2018).
    [Crossref]
  12. G. Kolhatkar, J. Plathier, A. Pignolet, and A. Ruediger, “Effect of the gold crystallinity on the enhanced luminescence signal of scanning probe tips in apertureless near-field optical microscopy,” Opt. Express 25(21), 25929–25937 (2017).
    [Crossref]
  13. J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
    [Crossref]
  14. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
    [Crossref]
  15. H. Lin, C. Huang, G. Cheng, N. Chen, and H. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
    [Crossref]
  16. M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21(11), 3625 (2011).
    [Crossref]
  17. P. Chen and B. Liedberg, “Curvature of the localized surface plasmon resonance peak,” Anal. Chem. 86(15), 7399–7405 (2014).
    [Crossref]
  18. J. A. Faucheaux, A. L. Stanton, and P. K. Jain, “Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
    [Crossref]
  19. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  20. E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
    [Crossref]
  21. A. Agharazy Dormeny, P. Abedini Sohi, and M. Kahrizi, “Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures,” Results Phys. 16, 102869 (2020).
    [Crossref]
  22. F. Peter, A. Rüdiger, and R. Waser, “Mechanical crosstalk between vertical and lateral piezoresponse force microscopy,” Rev. Sci. Instrum. 77(3), 036103 (2006).
    [Crossref]
  23. W. G. Nilsen and J. G. Skinner, “Raman Spectrum of Strontium Titanate,” J. Chem. Phys. 48(5), 2240–2248 (1968).
    [Crossref]
  24. A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger, “Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films,” Thin Solid Films 661, 23–31 (2018).
    [Crossref]
  25. S. Vedraine, R. Hou, P. R. Norton, and F. Lagugne-Labarthet, “On the absorption and electromagnetic field spectral shifts in plasmonic nanotriangle arrays,” Opt. Express 22(11), 13308–13313 (2014).
    [Crossref]

2020 (1)

A. Agharazy Dormeny, P. Abedini Sohi, and M. Kahrizi, “Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures,” Results Phys. 16, 102869 (2020).
[Crossref]

2019 (3)

G. Kang, M. Yang, M. S. Mattei, G. C. Schatz, and R. P. Van Duyne, “In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy,” Nano Lett. 19(3), 2106–2113 (2019).
[Crossref]

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

M. Nicklaus, G. Kolhatkar, J. Plathier, C. Dab, and A. Ruediger, “Direct Observation of Core-Shell Structures in Individual Lead Titanate Ferroelectric Nanostructures by Tip-Enhanced Refractive Index Mapping,” Adv. Funct. Mater. 29(2), 1806770 (2019).
[Crossref]

2018 (4)

G. Kolhatkar, J. Plathier, and A. Ruediger, “Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy – a review,” J. Mater. Chem. C 6(6), 1307–1319 (2018).
[Crossref]

D. M. Mittleman, “Twenty years of terahertz imaging [Invited],” Opt. Express 26(8), 9417–9431 (2018).
[Crossref]

Y. Baba, I. Matsuya, M. Nishikawa, and T. Ishibashi, “Measurement of polarization properties of fifth harmonic signals in apertureless-type scanning near-field optical microscopy,” Jpn. J. Appl. Phys. 57(9S2), 09TC04 (2018).
[Crossref]

A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger, “Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films,” Thin Solid Films 661, 23–31 (2018).
[Crossref]

2017 (2)

2016 (1)

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Ares, and A. Ruediger, “Composition variation in Al-based dilute nitride alloys using apertureless scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[Crossref]

2015 (2)

A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
[Crossref]

K. Eberhardt, C. Stiebing, C. Matthaus, M. Schmitt, and J. Popp, “Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update,” Expert Rev. Mol. Diagn. 15(6), 773–787 (2015).
[Crossref]

2014 (3)

P. Chen and B. Liedberg, “Curvature of the localized surface plasmon resonance peak,” Anal. Chem. 86(15), 7399–7405 (2014).
[Crossref]

J. A. Faucheaux, A. L. Stanton, and P. K. Jain, “Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
[Crossref]

S. Vedraine, R. Hou, P. R. Norton, and F. Lagugne-Labarthet, “On the absorption and electromagnetic field spectral shifts in plasmonic nanotriangle arrays,” Opt. Express 22(11), 13308–13313 (2014).
[Crossref]

2012 (2)

H. Lin, C. Huang, G. Cheng, N. Chen, and H. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
[Crossref]

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref]

2011 (1)

M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21(11), 3625 (2011).
[Crossref]

2010 (3)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

2009 (1)

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

2006 (1)

F. Peter, A. Rüdiger, and R. Waser, “Mechanical crosstalk between vertical and lateral piezoresponse force microscopy,” Rev. Sci. Instrum. 77(3), 036103 (2006).
[Crossref]

1968 (1)

W. G. Nilsen and J. G. Skinner, “Raman Spectrum of Strontium Titanate,” J. Chem. Phys. 48(5), 2240–2248 (1968).
[Crossref]

Abedini Sohi, P.

A. Agharazy Dormeny, P. Abedini Sohi, and M. Kahrizi, “Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures,” Results Phys. 16, 102869 (2020).
[Crossref]

Affagard, J. S.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Agharazy Dormeny, A.

A. Agharazy Dormeny, P. Abedini Sohi, and M. Kahrizi, “Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures,” Results Phys. 16, 102869 (2020).
[Crossref]

Aimez, V.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Ares, and A. Ruediger, “Composition variation in Al-based dilute nitride alloys using apertureless scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[Crossref]

Allain, J. M.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Amaechi, I.

A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger, “Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films,” Thin Solid Films 661, 23–31 (2018).
[Crossref]

Ambriz Vargas, F.

A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger, “Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films,” Thin Solid Films 661, 23–31 (2018).
[Crossref]

Angelomé, P. C.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Ares, R.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Ares, and A. Ruediger, “Composition variation in Al-based dilute nitride alloys using apertureless scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[Crossref]

Astilean, S.

M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21(11), 3625 (2011).
[Crossref]

Baba, Y.

Y. Baba, I. Matsuya, M. Nishikawa, and T. Ishibashi, “Measurement of polarization properties of fifth harmonic signals in apertureless-type scanning near-field optical microscopy,” Jpn. J. Appl. Phys. 57(9S2), 09TC04 (2018).
[Crossref]

Beaurepaire, E.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bonod-Bidaud, C.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Boucherif, A.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Ares, and A. Ruediger, “Composition variation in Al-based dilute nitride alloys using apertureless scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Chen, N.

Chen, P.

P. Chen and B. Liedberg, “Curvature of the localized surface plasmon resonance peak,” Anal. Chem. 86(15), 7399–7405 (2014).
[Crossref]

Cheng, G.

Chui, H.

Cobley, C.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Dab, C.

M. Nicklaus, G. Kolhatkar, J. Plathier, C. Dab, and A. Ruediger, “Direct Observation of Core-Shell Structures in Individual Lead Titanate Ferroelectric Nanostructures by Tip-Enhanced Refractive Index Mapping,” Adv. Funct. Mater. 29(2), 1806770 (2019).
[Crossref]

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Ares, and A. Ruediger, “Composition variation in Al-based dilute nitride alloys using apertureless scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[Crossref]

Ducourthial, G.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Eberhardt, K.

K. Eberhardt, C. Stiebing, C. Matthaus, M. Schmitt, and J. Popp, “Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update,” Expert Rev. Mol. Diagn. 15(6), 773–787 (2015).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Fafard, S.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Ares, and A. Ruediger, “Composition variation in Al-based dilute nitride alloys using apertureless scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[Crossref]

Faucheaux, J. A.

J. A. Faucheaux, A. L. Stanton, and P. K. Jain, “Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
[Crossref]

Gabudean, A. M.

M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21(11), 3625 (2011).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Hadj Youssef, A.

A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger, “Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films,” Thin Solid Films 661, 23–31 (2018).
[Crossref]

Hou, R.

Huang, C.

Huang, J.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Ishibashi, T.

Y. Baba, I. Matsuya, M. Nishikawa, and T. Ishibashi, “Measurement of polarization properties of fifth harmonic signals in apertureless-type scanning near-field optical microscopy,” Jpn. J. Appl. Phys. 57(9S2), 09TC04 (2018).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jain, P. K.

J. A. Faucheaux, A. L. Stanton, and P. K. Jain, “Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
[Crossref]

Kahrizi, M.

A. Agharazy Dormeny, P. Abedini Sohi, and M. Kahrizi, “Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures,” Results Phys. 16, 102869 (2020).
[Crossref]

Kang, G.

G. Kang, M. Yang, M. S. Mattei, G. C. Schatz, and R. P. Van Duyne, “In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy,” Nano Lett. 19(3), 2106–2113 (2019).
[Crossref]

Kazantsev, D. V.

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Kazantseva, E. A.

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Kolhatkar, G.

M. Nicklaus, G. Kolhatkar, J. Plathier, C. Dab, and A. Ruediger, “Direct Observation of Core-Shell Structures in Individual Lead Titanate Ferroelectric Nanostructures by Tip-Enhanced Refractive Index Mapping,” Adv. Funct. Mater. 29(2), 1806770 (2019).
[Crossref]

G. Kolhatkar, J. Plathier, and A. Ruediger, “Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy – a review,” J. Mater. Chem. C 6(6), 1307–1319 (2018).
[Crossref]

G. Kolhatkar, J. Plathier, A. Pignolet, and A. Ruediger, “Effect of the gold crystallinity on the enhanced luminescence signal of scanning probe tips in apertureless near-field optical microscopy,” Opt. Express 25(21), 25929–25937 (2017).
[Crossref]

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Ares, and A. Ruediger, “Composition variation in Al-based dilute nitride alloys using apertureless scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[Crossref]

Kuznetsov, E. V.

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Lagugne-Labarthet, F.

Lechuga, L. M.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Liedberg, B.

P. Chen and B. Liedberg, “Curvature of the localized surface plasmon resonance peak,” Anal. Chem. 86(15), 7399–7405 (2014).
[Crossref]

Lin, H.

Liu, J.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref]

Liz-Marzán, L. M.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Lopez-Poncelas, M.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Marks, L. D.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Matsuya, I.

Y. Baba, I. Matsuya, M. Nishikawa, and T. Ishibashi, “Measurement of polarization properties of fifth harmonic signals in apertureless-type scanning near-field optical microscopy,” Jpn. J. Appl. Phys. 57(9S2), 09TC04 (2018).
[Crossref]

Mattei, M. S.

G. Kang, M. Yang, M. S. Mattei, G. C. Schatz, and R. P. Van Duyne, “In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy,” Nano Lett. 19(3), 2106–2113 (2019).
[Crossref]

Matthaus, C.

K. Eberhardt, C. Stiebing, C. Matthaus, M. Schmitt, and J. Popp, “Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update,” Expert Rev. Mol. Diagn. 15(6), 773–787 (2015).
[Crossref]

McMahon, J. M.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Merlen, A.

A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger, “Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films,” Thin Solid Films 661, 23–31 (2018).
[Crossref]

A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
[Crossref]

Mittleman, D. M.

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nicklaus, M.

M. Nicklaus, G. Kolhatkar, J. Plathier, C. Dab, and A. Ruediger, “Direct Observation of Core-Shell Structures in Individual Lead Titanate Ferroelectric Nanostructures by Tip-Enhanced Refractive Index Mapping,” Adv. Funct. Mater. 29(2), 1806770 (2019).
[Crossref]

Nilsen, W. G.

W. G. Nilsen and J. G. Skinner, “Raman Spectrum of Strontium Titanate,” J. Chem. Phys. 48(5), 2240–2248 (1968).
[Crossref]

Nishikawa, M.

Y. Baba, I. Matsuya, M. Nishikawa, and T. Ishibashi, “Measurement of polarization properties of fifth harmonic signals in apertureless-type scanning near-field optical microscopy,” Jpn. J. Appl. Phys. 57(9S2), 09TC04 (2018).
[Crossref]

Norton, P. R.

Peter, F.

F. Peter, A. Rüdiger, and R. Waser, “Mechanical crosstalk between vertical and lateral piezoresponse force microscopy,” Rev. Sci. Instrum. 77(3), 036103 (2006).
[Crossref]

Pignolet, A.

Plathier, J.

M. Nicklaus, G. Kolhatkar, J. Plathier, C. Dab, and A. Ruediger, “Direct Observation of Core-Shell Structures in Individual Lead Titanate Ferroelectric Nanostructures by Tip-Enhanced Refractive Index Mapping,” Adv. Funct. Mater. 29(2), 1806770 (2019).
[Crossref]

G. Kolhatkar, J. Plathier, and A. Ruediger, “Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy – a review,” J. Mater. Chem. C 6(6), 1307–1319 (2018).
[Crossref]

G. Kolhatkar, J. Plathier, A. Pignolet, and A. Ruediger, “Effect of the gold crystallinity on the enhanced luminescence signal of scanning probe tips in apertureless near-field optical microscopy,” Opt. Express 25(21), 25929–25937 (2017).
[Crossref]

A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
[Crossref]

Popp, J.

K. Eberhardt, C. Stiebing, C. Matthaus, M. Schmitt, and J. Popp, “Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update,” Expert Rev. Mol. Diagn. 15(6), 773–787 (2015).
[Crossref]

Potara, M.

M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21(11), 3625 (2011).
[Crossref]

Ringe, E.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Rubio-Amador, R.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Rüdiger, A.

F. Peter, A. Rüdiger, and R. Waser, “Mechanical crosstalk between vertical and lateral piezoresponse force microscopy,” Rev. Sci. Instrum. 77(3), 036103 (2006).
[Crossref]

Ruediger, A.

M. Nicklaus, G. Kolhatkar, J. Plathier, C. Dab, and A. Ruediger, “Direct Observation of Core-Shell Structures in Individual Lead Titanate Ferroelectric Nanostructures by Tip-Enhanced Refractive Index Mapping,” Adv. Funct. Mater. 29(2), 1806770 (2019).
[Crossref]

G. Kolhatkar, J. Plathier, and A. Ruediger, “Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy – a review,” J. Mater. Chem. C 6(6), 1307–1319 (2018).
[Crossref]

A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger, “Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films,” Thin Solid Films 661, 23–31 (2018).
[Crossref]

G. Kolhatkar, J. Plathier, A. Pignolet, and A. Ruediger, “Effect of the gold crystallinity on the enhanced luminescence signal of scanning probe tips in apertureless near-field optical microscopy,” Opt. Express 25(21), 25929–25937 (2017).
[Crossref]

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Ares, and A. Ruediger, “Composition variation in Al-based dilute nitride alloys using apertureless scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[Crossref]

A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
[Crossref]

Ruggiero, F.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Sarkissian, A.

A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger, “Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films,” Thin Solid Films 661, 23–31 (2018).
[Crossref]

Schanne-Klein, M. C.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Schatz, G. C.

G. Kang, M. Yang, M. S. Mattei, G. C. Schatz, and R. P. Van Duyne, “In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy,” Nano Lett. 19(3), 2106–2113 (2019).
[Crossref]

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Schmeltz, M.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Schmitt, M.

K. Eberhardt, C. Stiebing, C. Matthaus, M. Schmitt, and J. Popp, “Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update,” Expert Rev. Mol. Diagn. 15(6), 773–787 (2015).
[Crossref]

Sepúlveda, B.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shelaev, A. V.

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Skinner, J. G.

W. G. Nilsen and J. G. Skinner, “Raman Spectrum of Strontium Titanate,” J. Chem. Phys. 48(5), 2240–2248 (1968).
[Crossref]

Sohn, K.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Solinas, X.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

Stanton, A. L.

J. A. Faucheaux, A. L. Stanton, and P. K. Jain, “Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
[Crossref]

Stiebing, C.

K. Eberhardt, C. Stiebing, C. Matthaus, M. Schmitt, and J. Popp, “Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update,” Expert Rev. Mol. Diagn. 15(6), 773–787 (2015).
[Crossref]

Thomas, R.

A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger, “Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films,” Thin Solid Films 661, 23–31 (2018).
[Crossref]

Timofeev, S. V.

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Van Duyne, R. P.

G. Kang, M. Yang, M. S. Mattei, G. C. Schatz, and R. P. Van Duyne, “In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy,” Nano Lett. 19(3), 2106–2113 (2019).
[Crossref]

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Vedraine, S.

Waser, R.

F. Peter, A. Rüdiger, and R. Waser, “Mechanical crosstalk between vertical and lateral piezoresponse force microscopy,” Rev. Sci. Instrum. 77(3), 036103 (2006).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Xia, Y.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Yang, M.

G. Kang, M. Yang, M. S. Mattei, G. C. Schatz, and R. P. Van Duyne, “In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy,” Nano Lett. 19(3), 2106–2113 (2019).
[Crossref]

Yu, M.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref]

Zheng, J.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref]

Zhou, C.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref]

Adv. Funct. Mater. (1)

M. Nicklaus, G. Kolhatkar, J. Plathier, C. Dab, and A. Ruediger, “Direct Observation of Core-Shell Structures in Individual Lead Titanate Ferroelectric Nanostructures by Tip-Enhanced Refractive Index Mapping,” Adv. Funct. Mater. 29(2), 1806770 (2019).
[Crossref]

Anal. Chem. (1)

P. Chen and B. Liedberg, “Curvature of the localized surface plasmon resonance peak,” Anal. Chem. 86(15), 7399–7405 (2014).
[Crossref]

Expert Rev. Mol. Diagn. (1)

K. Eberhardt, C. Stiebing, C. Matthaus, M. Schmitt, and J. Popp, “Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update,” Expert Rev. Mol. Diagn. 15(6), 773–787 (2015).
[Crossref]

J. Biophotonics (1)

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-Poncelas, C. Bonod-Bidaud, R. Rubio-Amador, F. Ruggiero, J. M. Allain, E. Beaurepaire, and M. C. Schanne-Klein, “Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging,” J. Biophotonics 12(5), e201800336 (2019).
[Crossref]

J. Chem. Phys. (1)

W. G. Nilsen and J. G. Skinner, “Raman Spectrum of Strontium Titanate,” J. Chem. Phys. 48(5), 2240–2248 (1968).
[Crossref]

J. Mater. Chem. (1)

M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21(11), 3625 (2011).
[Crossref]

J. Mater. Chem. C (1)

G. Kolhatkar, J. Plathier, and A. Ruediger, “Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy – a review,” J. Mater. Chem. C 6(6), 1307–1319 (2018).
[Crossref]

J. Phys. Chem. C (1)

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

J. Phys. Chem. Lett. (1)

J. A. Faucheaux, A. L. Stanton, and P. K. Jain, “Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities,” J. Phys. Chem. Lett. 5(6), 976–985 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Baba, I. Matsuya, M. Nishikawa, and T. Ishibashi, “Measurement of polarization properties of fifth harmonic signals in apertureless-type scanning near-field optical microscopy,” Jpn. J. Appl. Phys. 57(9S2), 09TC04 (2018).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (1)

G. Kang, M. Yang, M. S. Mattei, G. C. Schatz, and R. P. Van Duyne, “In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy,” Nano Lett. 19(3), 2106–2113 (2019).
[Crossref]

Nano Today (1)

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Nanoscale (1)

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Opt. Express (4)

Phys. Chem. Chem. Phys. (2)

A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
[Crossref]

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Ares, and A. Ruediger, “Composition variation in Al-based dilute nitride alloys using apertureless scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[Crossref]

Phys.-Usp. (1)

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Results Phys. (1)

A. Agharazy Dormeny, P. Abedini Sohi, and M. Kahrizi, “Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures,” Results Phys. 16, 102869 (2020).
[Crossref]

Rev. Sci. Instrum. (1)

F. Peter, A. Rüdiger, and R. Waser, “Mechanical crosstalk between vertical and lateral piezoresponse force microscopy,” Rev. Sci. Instrum. 77(3), 036103 (2006).
[Crossref]

Thin Solid Films (1)

A. Hadj Youssef, F. Ambriz Vargas, I. Amaechi, A. Sarkissian, A. Merlen, R. Thomas, and A. Ruediger, “Impact of negative oxygen ions on the deposition processes of RF-magnetron sputtered SrTiO3 thin films,” Thin Solid Films 661, 23–31 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. 3D representation of the displacement of the gold tip during the mapping of the LSPR position on SrTiO3 nanostructures by aSNOM in TERS configuration.
Fig. 2.
Fig. 2. Scanning electron microscopy (SEM) image of a typical gold tip produced by pulsed electrochemical etching.
Fig. 3.
Fig. 3. X-ray diffraction pattern of the 15 nm thick SrTiO3 sample.
Fig. 4.
Fig. 4. a) 500 ${\times} $ 500 nm2 topography image of the SrTiO3 nanostructures, b) High resolution map of LSPR position on SrTiO3 nanostructures deposited on platinized substrate. The white lines correspond to the areas over which the profiles were measured. The exposure time for measuring each spectrum was 1 s and c) Typical gold tip signal spectra acquired on a planar surface (Pos. 1) and at a step feature (Pos. 2) and fitted with Lorentzian function (red line). The value of 220 cm-1corresponds to the difference in the center positions of the Lorentzian functions obtained by a least-square fit.
Fig. 5.
Fig. 5. (a) Quantitative measurement of the anti-correlation between the variation of the LSPR position and the topography changes. The blue lines show the evolution of the LSPR position when the topography of the SrTiO3 nanostructures shows stepped morphology, (b) Correlation between the variation of the LSPR position and the second derivative of the height.
Fig. 6.
Fig. 6. Simulated absorption spectrum shifts due to surface profile.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε r = 0.07 λ + 32
ε r = 2 n 2

Metrics