Abstract

We experimentally compared for the first time, two techniques of optical fiber preform shaping based on the mechanical grinding and thermal CO2 laser processing from the point of the inner-cladding losses. The shaped preforms were fabricated of coreless pure silica technical rods as well as high purity silica Heraeus F300 rods and drawn them into coreless multimode fibers with various inner-cladding geometries coated with a low index fluorinated polymers. The background losses of the fibers were measured via the cut-back method and compared to the losses of the unshaped fibers with a circular cross-section. Results show that both preform-shaping techniques would induce additional losses in the inner-cladding. High surface scattering losses were observed in the mechanically-grinded fibers. On the other hand, the mechanical grinding retains the advantage of a significant reduction of attenuation peaks attributed to OH-groups that penetrated into the preform surface during the preform collapse. On the contrary, CO2 laser thermal-shaping provides the advantage of quick, fully automated shaping with smooth surface finish and induces much lower scattering losses, but it is not so effective in removing water penetrated surface layer of the preform so that OH-groups diffuse deeper towards the preform center. Additionally, laser thermal-shaping allows processing the preform to complex shapes which are more effective in scrambling cladding modes. Some of the absorption peaks of OH-groups and fluorinated polymers may be rather close to common pumping wavelengths and this should be considered in the design of the double-clad fibers and selection of proper shaping technology.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. 27(11), B63–B92 (2010).
    [Crossref]
  2. R. Maurer, “Optical waveguide light source,” U.S. Patent 3,808,549 (1974).
  3. E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, and B. C. McCollumn, “Double-clad, offset core Nd fiber laser,” in Proc. Opt. Fiber Sensors, PD5, 533–535 (1988).
  4. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  5. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref]
  6. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref]
  7. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  8. F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, S. P. Palese, E. Cheung, and L. Dong, “Efficient 240W single-mode 1018nm laser from an Ytterbium-doped 50/400µm all-solid photonic bandgap fiber,” Opt. Express 26(3), 3138–3144 (2018).
    [Crossref]
  9. A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
    [Crossref]
  10. S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
    [Crossref]
  11. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
    [Crossref]
  12. P. Koska, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
    [Crossref]
  13. P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
    [Crossref]
  14. D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry,” J. Opt. Soc. Am. 19(6), 1259–1263 (2002).
    [Crossref]
  15. J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39(8), 987–994 (2003).
    [Crossref]
  16. H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-Clad Fiber Laser with 30 W Output Power,” in Optical Amplifiers and Their Applications, Opt. Soc. Am., 16, p. FAW18 (1997).
  17. C. A. Codemard, A. Malinowski, and M. N. Zervas, “Numerical optimisation of pump absorption in doped double-clad fiber with transverse and longitudinal perturbation,” in Fiber Lasers XIV: Technology and Systems, Int. Soc. Opt. Photonics, 10083, p. 1008315 (2017).
  18. P. Koska, P. Peterka, J. Aubrecht, O. Podrazky, F. Todorov, M. Becker, Y. Baravets, P. Honzatko, and I. Kasik, “Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers,” Opt. Express 24(1), 102–107 (2016).
    [Crossref]
  19. A. A. Jasim, J. Aubrecht, P. Peterka, M. Kamrádek, O. Podrazký, F. Todorov, I. Kašík, and P. Honzátko, “Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform,” In Proc. CLEO-Europe and EQEC, München, CJ-p-8 (2019).
  20. L. Talbot, T. Boilard, and M. Bernier, “Fiber laser pump reflector based on volume Bragg grating,” In Proc. CLEO-Europe and EQEC, München, p. CJ. 11, 5 (2019).
  21. D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
    [Crossref]
  22. V. V. Buchanov, M. O. Kaptakov, E. N. Murav’ev, V. I. Revenko, and E. F. Solinov, “Theoretical Research of Laser Glass Cutting,” Glass Phys. Chem. 44(3), 254–259 (2018).
    [Crossref]
  23. V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
    [Crossref]
  24. M. Brenci, P. F. Checcacci, R. Falciai, and A. M. Scheggi, “Multimode optical fibers with noncircular cross section,” Radio Sci. 16(4), 535–540 (1981).
    [Crossref]
  25. P. C. Shardlow, R. Standish, J. Sahu, and W. A. Clarkson, “Cladding Shaping of Optical Fibre Preforms via CO2 Laser Machining,” in European Conference on Lasers and Electro-Optics, Opt. Soc. Am., CJ-P-29 (2015).
  26. A. A. Jasim, O. Podrazký, P. Peterka, F. Todorov, and P. Honzátko, “Experimental investigation and characterization of fabrication shaped clad optical fiber by thermally polishing optical fiber preforms with CO2 laser,” in Micro-structured and Specialty Optical Fibres VI, Int. Soc. Opt. Photonics 11029, 1102909 (2019).
  27. O. Podrazký, I. Kašík, P. Peterka, J. Aubrecht, J. Cajzl, J. Proboštová, and V. Matějec, “Preparation of optical fibers with non-circular cross-section for fiber lasers and amplifiers,” In Photonics, Devices, and Systems VI, Int. Soc. Opt. Photonics 9450, 94501A (2015).
  28. E. Desurvire., and M. N. Zervas, Erbium-doped fiber amplifiers: principles and applications. Wiley Series in Telecommunications and Signal Processing, (1994).
  29. M. Bukshtab, Photometry, radiometry, and measurements of optical losses. Springer Series in Optical Sciences, 2nd Ed., Chap. 11, 209 (2019).
  30. H. Kakiuchida, K. Saito, and A. J. Ikushima, “Precise determination of fictive temperature of silica glass by infrared absorption spectrum,” J. Appl. Phys. 93(1), 777–779 (2003).
    [Crossref]
  31. Y. L. Peng, A. Agarwal, M. Tomozawa, and T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217(2-3), 272–277 (1997).
    [Crossref]
  32. K. Tsujikawa, K. Tajima, and M. Ohashi, “Rayleigh scattering reduction method for silica-based optical fiber,” J. Lightwave Technol. 18(11), 1528–1532 (2000).
    [Crossref]
  33. P. Guenot, P. Nouchi, and B. Poumellec, “Influence of drawing temperature on light scattering properties of single-mode fibers,” in Optical Fiber Communication Conference, Opt. Soc. Am., p. ThG2 (1999).
  34. J. Paul and S. Shah, “A case step study for reducing water peak in optical fiber,” In Proc. Photonics, New Delhi, India (2006).
  35. J. Świderski, A. Zając, M. Skorczakowski, Z. Jankiewicz, and P. Konieczny, “Rare-earth-doped high-power fiber lasers generating in near infrared range,” Opto-Electron. Rev. 12(2), 169–173 (2004).
  36. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+-doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
    [Crossref]
  37. T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, “Polyimides derived from 2, 2'-bis (trifluoromethyl)-4, 4'-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27(22), 6665–6670 (1994).
    [Crossref]

2019 (1)

D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
[Crossref]

2018 (3)

V. V. Buchanov, M. O. Kaptakov, E. N. Murav’ev, V. I. Revenko, and E. F. Solinov, “Theoretical Research of Laser Glass Cutting,” Glass Phys. Chem. 44(3), 254–259 (2018).
[Crossref]

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, S. P. Palese, E. Cheung, and L. Dong, “Efficient 240W single-mode 1018nm laser from an Ytterbium-doped 50/400µm all-solid photonic bandgap fiber,” Opt. Express 26(3), 3138–3144 (2018).
[Crossref]

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

2016 (2)

P. Koska, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

P. Koska, P. Peterka, J. Aubrecht, O. Podrazky, F. Todorov, M. Becker, Y. Baravets, P. Honzatko, and I. Kasik, “Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers,” Opt. Express 24(1), 102–107 (2016).
[Crossref]

2014 (1)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

2013 (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (1)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. 27(11), B63–B92 (2010).
[Crossref]

2009 (1)

2006 (1)

2004 (1)

J. Świderski, A. Zając, M. Skorczakowski, Z. Jankiewicz, and P. Konieczny, “Rare-earth-doped high-power fiber lasers generating in near infrared range,” Opto-Electron. Rev. 12(2), 169–173 (2004).

2003 (3)

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Precise determination of fictive temperature of silica glass by infrared absorption spectrum,” J. Appl. Phys. 93(1), 777–779 (2003).
[Crossref]

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39(8), 987–994 (2003).
[Crossref]

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[Crossref]

2002 (1)

D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry,” J. Opt. Soc. Am. 19(6), 1259–1263 (2002).
[Crossref]

2001 (1)

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[Crossref]

2000 (1)

1997 (1)

Y. L. Peng, A. Agarwal, M. Tomozawa, and T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217(2-3), 272–277 (1997).
[Crossref]

1994 (1)

T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, “Polyimides derived from 2, 2'-bis (trifluoromethyl)-4, 4'-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27(22), 6665–6670 (1994).
[Crossref]

1981 (1)

M. Brenci, P. F. Checcacci, R. Falciai, and A. M. Scheggi, “Multimode optical fibers with noncircular cross section,” Radio Sci. 16(4), 535–540 (1981).
[Crossref]

Agarwal, A.

Y. L. Peng, A. Agarwal, M. Tomozawa, and T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217(2-3), 272–277 (1997).
[Crossref]

Alam, S. U.

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39(8), 987–994 (2003).
[Crossref]

Alvarez-Chavez, J. A.

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39(8), 987–994 (2003).
[Crossref]

Ando, S.

T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, “Polyimides derived from 2, 2'-bis (trifluoromethyl)-4, 4'-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27(22), 6665–6670 (1994).
[Crossref]

Aubrecht, J.

P. Koska, P. Peterka, J. Aubrecht, O. Podrazky, F. Todorov, M. Becker, Y. Baravets, P. Honzatko, and I. Kasik, “Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers,” Opt. Express 24(1), 102–107 (2016).
[Crossref]

A. A. Jasim, J. Aubrecht, P. Peterka, M. Kamrádek, O. Podrazký, F. Todorov, I. Kašík, and P. Honzátko, “Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform,” In Proc. CLEO-Europe and EQEC, München, CJ-p-8 (2019).

O. Podrazký, I. Kašík, P. Peterka, J. Aubrecht, J. Cajzl, J. Proboštová, and V. Matějec, “Preparation of optical fibers with non-circular cross-section for fiber lasers and amplifiers,” In Photonics, Devices, and Systems VI, Int. Soc. Opt. Photonics 9450, 94501A (2015).

Baravets, Y.

Becker, M.

Bernier, M.

L. Talbot, T. Boilard, and M. Bernier, “Fiber laser pump reflector based on volume Bragg grating,” In Proc. CLEO-Europe and EQEC, München, p. CJ. 11, 5 (2019).

Blanchet, T. A.

Y. L. Peng, A. Agarwal, M. Tomozawa, and T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217(2-3), 272–277 (1997).
[Crossref]

Boilard, T.

L. Talbot, T. Boilard, and M. Bernier, “Fiber laser pump reflector based on volume Bragg grating,” In Proc. CLEO-Europe and EQEC, München, p. CJ. 11, 5 (2019).

Bradford, J. D.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Brenci, M.

M. Brenci, P. F. Checcacci, R. Falciai, and A. M. Scheggi, “Multimode optical fibers with noncircular cross section,” Radio Sci. 16(4), 535–540 (1981).
[Crossref]

Buchanov, V. V.

V. V. Buchanov, M. O. Kaptakov, E. N. Murav’ev, V. I. Revenko, and E. F. Solinov, “Theoretical Research of Laser Glass Cutting,” Glass Phys. Chem. 44(3), 254–259 (2018).
[Crossref]

Bukshtab, M.

M. Bukshtab, Photometry, radiometry, and measurements of optical losses. Springer Series in Optical Sciences, 2nd Ed., Chap. 11, 209 (2019).

Byer, R. L.

Cajzl, J.

O. Podrazký, I. Kašík, P. Peterka, J. Aubrecht, J. Cajzl, J. Proboštová, and V. Matějec, “Preparation of optical fibers with non-circular cross-section for fiber lasers and amplifiers,” In Photonics, Devices, and Systems VI, Int. Soc. Opt. Photonics 9450, 94501A (2015).

Chavez-Gutierrez, F.

D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
[Crossref]

Checcacci, P. F.

M. Brenci, P. F. Checcacci, R. Falciai, and A. M. Scheggi, “Multimode optical fibers with noncircular cross section,” Radio Sci. 16(4), 535–540 (1981).
[Crossref]

Cheung, E.

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. 27(11), B63–B92 (2010).
[Crossref]

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39(8), 987–994 (2003).
[Crossref]

P. C. Shardlow, R. Standish, J. Sahu, and W. A. Clarkson, “Cladding Shaping of Optical Fibre Preforms via CO2 Laser Machining,” in European Conference on Lasers and Electro-Optics, Opt. Soc. Am., CJ-P-29 (2015).

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

C. A. Codemard, A. Malinowski, and M. N. Zervas, “Numerical optimisation of pump absorption in doped double-clad fiber with transverse and longitudinal perturbation,” in Fiber Lasers XIV: Technology and Systems, Int. Soc. Opt. Photonics, 10083, p. 1008315 (2017).

Cook, J.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Desurvire, E.

E. Desurvire., and M. N. Zervas, Erbium-doped fiber amplifiers: principles and applications. Wiley Series in Telecommunications and Signal Processing, (1994).

Digonnet, M. J. F.

Dong, L.

Doya, V.

P. Koska, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[Crossref]

Eidam, T.

Falciai, R.

M. Brenci, P. F. Checcacci, R. Falciai, and A. M. Scheggi, “Multimode optical fibers with noncircular cross section,” Radio Sci. 16(4), 535–540 (1981).
[Crossref]

Février, S.

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[Crossref]

Fu, L.

Glukhoedov, N. P.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[Crossref]

Grudinin, A. B.

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39(8), 987–994 (2003).
[Crossref]

Gu, G.

Guenot, P.

P. Guenot, P. Nouchi, and B. Poumellec, “Influence of drawing temperature on light scattering properties of single-mode fibers,” in Optical Fiber Communication Conference, Opt. Soc. Am., p. ThG2 (1999).

Guerrero-Viramontes, J. A.

D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
[Crossref]

Hakimi, F.

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, and B. C. McCollumn, “Double-clad, offset core Nd fiber laser,” in Proc. Opt. Fiber Sensors, PD5, 533–535 (1988).

Hawkins, T. W.

Honzatko, P.

Honzátko, P.

A. A. Jasim, J. Aubrecht, P. Peterka, M. Kamrádek, O. Podrazký, F. Todorov, I. Kašík, and P. Honzátko, “Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform,” In Proc. CLEO-Europe and EQEC, München, CJ-p-8 (2019).

A. A. Jasim, O. Podrazký, P. Peterka, F. Todorov, and P. Honzátko, “Experimental investigation and characterization of fabrication shaped clad optical fiber by thermally polishing optical fiber preforms with CO2 laser,” in Micro-structured and Specialty Optical Fibres VI, Int. Soc. Opt. Photonics 11029, 1102909 (2019).

Ikushima, A. J.

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Precise determination of fictive temperature of silica glass by infrared absorption spectrum,” J. Appl. Phys. 93(1), 777–779 (2003).
[Crossref]

Jankiewicz, Z.

J. Świderski, A. Zając, M. Skorczakowski, Z. Jankiewicz, and P. Konieczny, “Rare-earth-doped high-power fiber lasers generating in near infrared range,” Opto-Electron. Rev. 12(2), 169–173 (2004).

Jansen, F.

Jasim, A. A.

A. A. Jasim, O. Podrazký, P. Peterka, F. Todorov, and P. Honzátko, “Experimental investigation and characterization of fabrication shaped clad optical fiber by thermally polishing optical fiber preforms with CO2 laser,” in Micro-structured and Specialty Optical Fibres VI, Int. Soc. Opt. Photonics 11029, 1102909 (2019).

A. A. Jasim, J. Aubrecht, P. Peterka, M. Kamrádek, O. Podrazký, F. Todorov, I. Kašík, and P. Honzátko, “Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform,” In Proc. CLEO-Europe and EQEC, München, CJ-p-8 (2019).

Jauregui, C.

Jetschke, S.

Jiang, S.

Jones, M.

Kakiuchida, H.

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Precise determination of fictive temperature of silica glass by infrared absorption spectrum,” J. Appl. Phys. 93(1), 777–779 (2003).
[Crossref]

Kalichevsky-Dong, M. T.

Kamrádek, M.

A. A. Jasim, J. Aubrecht, P. Peterka, M. Kamrádek, O. Podrazký, F. Todorov, I. Kašík, and P. Honzátko, “Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform,” In Proc. CLEO-Europe and EQEC, München, CJ-p-8 (2019).

Kaptakov, M. O.

V. V. Buchanov, M. O. Kaptakov, E. N. Murav’ev, V. I. Revenko, and E. F. Solinov, “Theoretical Research of Laser Glass Cutting,” Glass Phys. Chem. 44(3), 254–259 (2018).
[Crossref]

Kasik, I.

Kašík, I.

A. A. Jasim, J. Aubrecht, P. Peterka, M. Kamrádek, O. Podrazký, F. Todorov, I. Kašík, and P. Honzátko, “Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform,” In Proc. CLEO-Europe and EQEC, München, CJ-p-8 (2019).

O. Podrazký, I. Kašík, P. Peterka, J. Aubrecht, J. Cajzl, J. Proboštová, and V. Matějec, “Preparation of optical fibers with non-circular cross-section for fiber lasers and amplifiers,” In Photonics, Devices, and Systems VI, Int. Soc. Opt. Photonics 9450, 94501A (2015).

Kirchhof, J.

Kong, F.

Konieczny, P.

J. Świderski, A. Zając, M. Skorczakowski, Z. Jankiewicz, and P. Konieczny, “Rare-earth-doped high-power fiber lasers generating in near infrared range,” Opto-Electron. Rev. 12(2), 169–173 (2004).

Koska, P.

P. Koska, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

P. Koska, P. Peterka, J. Aubrecht, O. Podrazky, F. Todorov, M. Becker, Y. Baravets, P. Honzatko, and I. Kasik, “Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers,” Opt. Express 24(1), 102–107 (2016).
[Crossref]

Kouznetsov, D.

D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry,” J. Opt. Soc. Am. 19(6), 1259–1263 (2002).
[Crossref]

Lee, Y. W.

Leich, M.

Leproux, P.

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[Crossref]

Limpert, J.

Madrazo de la Rosa, K.

D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
[Crossref]

Malinowski, A.

C. A. Codemard, A. Malinowski, and M. N. Zervas, “Numerical optimisation of pump absorption in doped double-clad fiber with transverse and longitudinal perturbation,” in Fiber Lasers XIV: Technology and Systems, Int. Soc. Opt. Photonics, 10083, p. 1008315 (2017).

Martinez-Rios, A.

D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
[Crossref]

Masychev, V. I.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[Crossref]

Matejec, V.

O. Podrazký, I. Kašík, P. Peterka, J. Aubrecht, J. Cajzl, J. Proboštová, and V. Matějec, “Preparation of optical fibers with non-circular cross-section for fiber lasers and amplifiers,” In Photonics, Devices, and Systems VI, Int. Soc. Opt. Photonics 9450, 94501A (2015).

Matsuura, T.

T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, “Polyimides derived from 2, 2'-bis (trifluoromethyl)-4, 4'-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27(22), 6665–6670 (1994).
[Crossref]

Maurer, R.

R. Maurer, “Optical waveguide light source,” U.S. Patent 3,808,549 (1974).

McCollumn, B. C.

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, and B. C. McCollumn, “Double-clad, offset core Nd fiber laser,” in Proc. Opt. Fiber Sensors, PD5, 533–535 (1988).

McKay, H. A.

Moloney, J. V.

D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry,” J. Opt. Soc. Am. 19(6), 1259–1263 (2002).
[Crossref]

Murav’ev, E. N.

V. V. Buchanov, M. O. Kaptakov, E. N. Murav’ev, V. I. Revenko, and E. F. Solinov, “Theoretical Research of Laser Glass Cutting,” Glass Phys. Chem. 44(3), 254–259 (2018).
[Crossref]

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. 27(11), B63–B92 (2010).
[Crossref]

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39(8), 987–994 (2003).
[Crossref]

Nouchi, P.

P. Guenot, P. Nouchi, and B. Poumellec, “Influence of drawing temperature on light scattering properties of single-mode fibers,” in Optical Fiber Communication Conference, Opt. Soc. Am., p. ThG2 (1999).

Ohashi, M.

Otto, H. J.

Pagnoux, D.

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[Crossref]

Palese, S. P.

Papchenko, B. P.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[Crossref]

Parsons, J.

Paul, J.

J. Paul and S. Shah, “A case step study for reducing water peak in optical fiber,” In Proc. Photonics, New Delhi, India (2006).

Peng, X.

Peng, Y. L.

Y. L. Peng, A. Agarwal, M. Tomozawa, and T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217(2-3), 272–277 (1997).
[Crossref]

Peterka, P.

P. Koska, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

P. Koska, P. Peterka, J. Aubrecht, O. Podrazky, F. Todorov, M. Becker, Y. Baravets, P. Honzatko, and I. Kasik, “Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers,” Opt. Express 24(1), 102–107 (2016).
[Crossref]

O. Podrazký, I. Kašík, P. Peterka, J. Aubrecht, J. Cajzl, J. Proboštová, and V. Matějec, “Preparation of optical fibers with non-circular cross-section for fiber lasers and amplifiers,” In Photonics, Devices, and Systems VI, Int. Soc. Opt. Photonics 9450, 94501A (2015).

A. A. Jasim, O. Podrazký, P. Peterka, F. Todorov, and P. Honzátko, “Experimental investigation and characterization of fabrication shaped clad optical fiber by thermally polishing optical fiber preforms with CO2 laser,” in Micro-structured and Specialty Optical Fibres VI, Int. Soc. Opt. Photonics 11029, 1102909 (2019).

A. A. Jasim, J. Aubrecht, P. Peterka, M. Kamrádek, O. Podrazký, F. Todorov, I. Kašík, and P. Honzátko, “Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform,” In Proc. CLEO-Europe and EQEC, München, CJ-p-8 (2019).

Po, H.

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, and B. C. McCollumn, “Double-clad, offset core Nd fiber laser,” in Proc. Opt. Fiber Sensors, PD5, 533–535 (1988).

Podrazky, O.

Podrazký, O.

A. A. Jasim, J. Aubrecht, P. Peterka, M. Kamrádek, O. Podrazký, F. Todorov, I. Kašík, and P. Honzátko, “Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform,” In Proc. CLEO-Europe and EQEC, München, CJ-p-8 (2019).

O. Podrazký, I. Kašík, P. Peterka, J. Aubrecht, J. Cajzl, J. Proboštová, and V. Matějec, “Preparation of optical fibers with non-circular cross-section for fiber lasers and amplifiers,” In Photonics, Devices, and Systems VI, Int. Soc. Opt. Photonics 9450, 94501A (2015).

A. A. Jasim, O. Podrazký, P. Peterka, F. Todorov, and P. Honzátko, “Experimental investigation and characterization of fabrication shaped clad optical fiber by thermally polishing optical fiber preforms with CO2 laser,” in Micro-structured and Specialty Optical Fibres VI, Int. Soc. Opt. Photonics 11029, 1102909 (2019).

Porraz-Culebro, T. E.

D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
[Crossref]

Poumellec, B.

P. Guenot, P. Nouchi, and B. Poumellec, “Influence of drawing temperature on light scattering properties of single-mode fibers,” in Optical Fiber Communication Conference, Opt. Soc. Am., p. ThG2 (1999).

Proboštová, J.

O. Podrazký, I. Kašík, P. Peterka, J. Aubrecht, J. Cajzl, J. Proboštová, and V. Matějec, “Preparation of optical fibers with non-circular cross-section for fiber lasers and amplifiers,” In Photonics, Devices, and Systems VI, Int. Soc. Opt. Photonics 9450, 94501A (2015).

Reichel, V.

H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-Clad Fiber Laser with 30 W Output Power,” in Optical Amplifiers and Their Applications, Opt. Soc. Am., 16, p. FAW18 (1997).

Revenko, V. I.

V. V. Buchanov, M. O. Kaptakov, E. N. Murav’ev, V. I. Revenko, and E. F. Solinov, “Theoretical Research of Laser Glass Cutting,” Glass Phys. Chem. 44(3), 254–259 (2018).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. 27(11), B63–B92 (2010).
[Crossref]

Richardson, M. C.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Roy, P.

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[Crossref]

Rusanov, S. Y.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[Crossref]

Sahu, J.

P. C. Shardlow, R. Standish, J. Sahu, and W. A. Clarkson, “Cladding Shaping of Optical Fibre Preforms via CO2 Laser Machining,” in European Conference on Lasers and Electro-Optics, Opt. Soc. Am., CJ-P-29 (2015).

Saito, K.

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Precise determination of fictive temperature of silica glass by infrared absorption spectrum,” J. Appl. Phys. 93(1), 777–779 (2003).
[Crossref]

Salceda-Delgado, G.

D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
[Crossref]

Sasaki, S.

T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, “Polyimides derived from 2, 2'-bis (trifluoromethyl)-4, 4'-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27(22), 6665–6670 (1994).
[Crossref]

Scheggi, A. M.

M. Brenci, P. F. Checcacci, R. Falciai, and A. M. Scheggi, “Multimode optical fibers with noncircular cross section,” Radio Sci. 16(4), 535–540 (1981).
[Crossref]

Schmidt, O.

Schreiber, T.

Selvas-Aguilar, R.

D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
[Crossref]

Shah, L.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Shah, S.

J. Paul and S. Shah, “A case step study for reducing water peak in optical fiber,” In Proc. Photonics, New Delhi, India (2006).

Shardlow, P. C.

P. C. Shardlow, R. Standish, J. Sahu, and W. A. Clarkson, “Cladding Shaping of Optical Fibre Preforms via CO2 Laser Machining,” in European Conference on Lasers and Electro-Optics, Opt. Soc. Am., CJ-P-29 (2015).

Sincore, A.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Sinha, S.

Skorczakowski, M.

J. Świderski, A. Zając, M. Skorczakowski, Z. Jankiewicz, and P. Konieczny, “Rare-earth-doped high-power fiber lasers generating in near infrared range,” Opto-Electron. Rev. 12(2), 169–173 (2004).

Smith, J. J.

Smith, V.

Snitzer, E.

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, and B. C. McCollumn, “Double-clad, offset core Nd fiber laser,” in Proc. Opt. Fiber Sensors, PD5, 533–535 (1988).

Solinov, E. F.

V. V. Buchanov, M. O. Kaptakov, E. N. Murav’ev, V. I. Revenko, and E. F. Solinov, “Theoretical Research of Laser Glass Cutting,” Glass Phys. Chem. 44(3), 254–259 (2018).
[Crossref]

Standish, R.

P. C. Shardlow, R. Standish, J. Sahu, and W. A. Clarkson, “Cladding Shaping of Optical Fibre Preforms via CO2 Laser Machining,” in European Conference on Lasers and Electro-Optics, Opt. Soc. Am., CJ-P-29 (2015).

Stutzki, F.

Suzuki, S.

Swiderski, J.

J. Świderski, A. Zając, M. Skorczakowski, Z. Jankiewicz, and P. Konieczny, “Rare-earth-doped high-power fiber lasers generating in near infrared range,” Opto-Electron. Rev. 12(2), 169–173 (2004).

Sysoev, V. K.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[Crossref]

Tajima, K.

Talbot, L.

L. Talbot, T. Boilard, and M. Bernier, “Fiber laser pump reflector based on volume Bragg grating,” In Proc. CLEO-Europe and EQEC, München, p. CJ. 11, 5 (2019).

Todorov, F.

P. Koska, P. Peterka, J. Aubrecht, O. Podrazky, F. Todorov, M. Becker, Y. Baravets, P. Honzatko, and I. Kasik, “Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers,” Opt. Express 24(1), 102–107 (2016).
[Crossref]

A. A. Jasim, J. Aubrecht, P. Peterka, M. Kamrádek, O. Podrazký, F. Todorov, I. Kašík, and P. Honzátko, “Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform,” In Proc. CLEO-Europe and EQEC, München, CJ-p-8 (2019).

A. A. Jasim, O. Podrazký, P. Peterka, F. Todorov, and P. Honzátko, “Experimental investigation and characterization of fabrication shaped clad optical fiber by thermally polishing optical fiber preforms with CO2 laser,” in Micro-structured and Specialty Optical Fibres VI, Int. Soc. Opt. Photonics 11029, 1102909 (2019).

Tomozawa, M.

Y. L. Peng, A. Agarwal, M. Tomozawa, and T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217(2-3), 272–277 (1997).
[Crossref]

Toral-Acosta, D.

D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
[Crossref]

Tsujikawa, K.

Tuminelli, R.

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, and B. C. McCollumn, “Double-clad, offset core Nd fiber laser,” in Proc. Opt. Fiber Sensors, PD5, 533–535 (1988).

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref]

H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-Clad Fiber Laser with 30 W Output Power,” in Optical Amplifiers and Their Applications, Opt. Soc. Am., 16, p. FAW18 (1997).

Turner, P. W.

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39(8), 987–994 (2003).
[Crossref]

Unger, S.

Welling, H.

H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-Clad Fiber Laser with 30 W Output Power,” in Optical Amplifiers and Their Applications, Opt. Soc. Am., 16, p. FAW18 (1997).

Wirth, C.

Yakovlev, A. A.

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[Crossref]

Yamamoto, F.

T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, “Polyimides derived from 2, 2'-bis (trifluoromethyl)-4, 4'-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27(22), 6665–6670 (1994).
[Crossref]

Zajac, A.

J. Świderski, A. Zając, M. Skorczakowski, Z. Jankiewicz, and P. Konieczny, “Rare-earth-doped high-power fiber lasers generating in near infrared range,” Opto-Electron. Rev. 12(2), 169–173 (2004).

Zellmer, H.

H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-Clad Fiber Laser with 30 W Output Power,” in Optical Amplifiers and Their Applications, Opt. Soc. Am., 16, p. FAW18 (1997).

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

C. A. Codemard, A. Malinowski, and M. N. Zervas, “Numerical optimisation of pump absorption in doped double-clad fiber with transverse and longitudinal perturbation,” in Fiber Lasers XIV: Technology and Systems, Int. Soc. Opt. Photonics, 10083, p. 1008315 (2017).

E. Desurvire., and M. N. Zervas, Erbium-doped fiber amplifiers: principles and applications. Wiley Series in Telecommunications and Signal Processing, (1994).

Appl. Opt. (1)

Glass Phys. Chem. (1)

V. V. Buchanov, M. O. Kaptakov, E. N. Murav’ev, V. I. Revenko, and E. F. Solinov, “Theoretical Research of Laser Glass Cutting,” Glass Phys. Chem. 44(3), 254–259 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 39(8), 987–994 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

P. Koska, P. Peterka, and V. Doya, “Numerical modeling of pump absorption in coiled and twisted double-clad fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Inorg. Mater. (1)

V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003).
[Crossref]

J. Appl. Phys. (1)

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Precise determination of fictive temperature of silica glass by infrared absorption spectrum,” J. Appl. Phys. 93(1), 777–779 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

Y. L. Peng, A. Agarwal, M. Tomozawa, and T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217(2-3), 272–277 (1997).
[Crossref]

J. Opt. Soc. Am. (2)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. 27(11), B63–B92 (2010).
[Crossref]

D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry,” J. Opt. Soc. Am. 19(6), 1259–1263 (2002).
[Crossref]

Laser Phys. Lett. (1)

D. Toral-Acosta, A. Martinez-Rios, R. Selvas-Aguilar, F. Chavez-Gutierrez, T. E. Porraz-Culebro, K. Madrazo de la Rosa, G. Salceda-Delgado, and J. A. Guerrero-Viramontes, “Asymmetric taper scrambler for improved pump homogeneity and absorption in side-pumped double-clad fibre lasers,” Laser Phys. Lett. 16(8), 085105 (2019).
[Crossref]

Macromolecules (1)

T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, “Polyimides derived from 2, 2'-bis (trifluoromethyl)-4, 4'-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27(22), 6665–6670 (1994).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[Crossref]

Opt. Lett. (1)

Opto-Electron. Rev. (1)

J. Świderski, A. Zając, M. Skorczakowski, Z. Jankiewicz, and P. Konieczny, “Rare-earth-doped high-power fiber lasers generating in near infrared range,” Opto-Electron. Rev. 12(2), 169–173 (2004).

Radio Sci. (1)

M. Brenci, P. F. Checcacci, R. Falciai, and A. M. Scheggi, “Multimode optical fibers with noncircular cross section,” Radio Sci. 16(4), 535–540 (1981).
[Crossref]

Other (13)

P. C. Shardlow, R. Standish, J. Sahu, and W. A. Clarkson, “Cladding Shaping of Optical Fibre Preforms via CO2 Laser Machining,” in European Conference on Lasers and Electro-Optics, Opt. Soc. Am., CJ-P-29 (2015).

A. A. Jasim, O. Podrazký, P. Peterka, F. Todorov, and P. Honzátko, “Experimental investigation and characterization of fabrication shaped clad optical fiber by thermally polishing optical fiber preforms with CO2 laser,” in Micro-structured and Specialty Optical Fibres VI, Int. Soc. Opt. Photonics 11029, 1102909 (2019).

O. Podrazký, I. Kašík, P. Peterka, J. Aubrecht, J. Cajzl, J. Proboštová, and V. Matějec, “Preparation of optical fibers with non-circular cross-section for fiber lasers and amplifiers,” In Photonics, Devices, and Systems VI, Int. Soc. Opt. Photonics 9450, 94501A (2015).

E. Desurvire., and M. N. Zervas, Erbium-doped fiber amplifiers: principles and applications. Wiley Series in Telecommunications and Signal Processing, (1994).

M. Bukshtab, Photometry, radiometry, and measurements of optical losses. Springer Series in Optical Sciences, 2nd Ed., Chap. 11, 209 (2019).

H. Zellmer, A. Tünnermann, H. Welling, and V. Reichel, “Double-Clad Fiber Laser with 30 W Output Power,” in Optical Amplifiers and Their Applications, Opt. Soc. Am., 16, p. FAW18 (1997).

C. A. Codemard, A. Malinowski, and M. N. Zervas, “Numerical optimisation of pump absorption in doped double-clad fiber with transverse and longitudinal perturbation,” in Fiber Lasers XIV: Technology and Systems, Int. Soc. Opt. Photonics, 10083, p. 1008315 (2017).

A. A. Jasim, J. Aubrecht, P. Peterka, M. Kamrádek, O. Podrazký, F. Todorov, I. Kašík, and P. Honzátko, “Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform,” In Proc. CLEO-Europe and EQEC, München, CJ-p-8 (2019).

L. Talbot, T. Boilard, and M. Bernier, “Fiber laser pump reflector based on volume Bragg grating,” In Proc. CLEO-Europe and EQEC, München, p. CJ. 11, 5 (2019).

R. Maurer, “Optical waveguide light source,” U.S. Patent 3,808,549 (1974).

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, and B. C. McCollumn, “Double-clad, offset core Nd fiber laser,” in Proc. Opt. Fiber Sensors, PD5, 533–535 (1988).

P. Guenot, P. Nouchi, and B. Poumellec, “Influence of drawing temperature on light scattering properties of single-mode fibers,” in Optical Fiber Communication Conference, Opt. Soc. Am., p. ThG2 (1999).

J. Paul and S. Shah, “A case step study for reducing water peak in optical fiber,” In Proc. Photonics, New Delhi, India (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. (a) Schematic diagram of the mechanically shaping process (b) real image of a mechanical-shaped preform.
Fig. 2.
Fig. 2. Illustrated diagram of the thermal-shaping system utilizing CO2 Laser.
Fig. 3.
Fig. 3. (a) Illustrated diagram of orienting the incident laser beam on the preform surface (b) are real images of small-section shaped preforms based on two angles of the laser beam incident.
Fig. 4.
Fig. 4. Depth measurement of the three shaped pieces of the same coreless Heraeus F300 preform, where (a) and (b) represents the depth in the linear and polar states respectively.
Fig. 5.
Fig. 5. Repeatability measurement of two shaped pieces of the same coreless Heraeus F300 preform at two different depths of 1 mm and 0.3 mm.
Fig. 6.
Fig. 6. (a) Real image of a longitudinal section of the shaped preform. (b) Real images of the cross-sections of various optical shaped preforms (coreless Heraeus F300) where (1) represents preform with hexagon shape, depth ∼1.0 mm, (2) hexagon shape, depth ∼0.5 mm, (3) hexagon shape, depth ∼0.3 mm, and (4) octagon shape, depth ∼0.5 mm.
Fig. 7.
Fig. 7. Cut-back measurement setup.
Fig. 8.
Fig. 8. (a) Illustrated diagram of seven cases of fiber condition in the BFA; where (case 1) The fiber end striped 1 mm, uniformly cleaved and flatly inserted in a 300 µm ferrule diameter of the BFA; (case 2) same fiber of case 1 but non-flatly inserted in the BFA, pushed 1 mm outside the ferrule face; (case 3) the fiber striped 1 cm, uniformly cleaved and flatly inserted; (case 4) the fiber striped 2 cm, non-uniformly cleaved and flatly inserted; (case 5) same fiber of case 4 but non-flatly inserted in the BFA; (case 6) the fiber striped 3 cm, non-uniformly cleaved and flatly inserted in 140 µm ferrule diameter; (case 7) the fiber striped 1.5 cm, uniformly cleaved and flatly inserted again in a 300 µm ferrule diameter. (b) It is the output peak power at 880 nm of the measured 200-m passive circular MMF for all seven cases.
Fig. 9.
Fig. 9. (a) Attenuation spectra of the circular and shaped fibers drawn of coreless technical glass, Heralux-WG, and Heraeus F300 rods. The abbreviations “T.shaped” and “M.shaped” denote fibers drawn of thermally-, and mechanically-shaped preforms, respectively. (b) Microscope images of the cross-sections of the shaped fibers with a description of their respective shaped preforms.
Fig. 10.
Fig. 10. (a) The scattering spectra at short wavelengths of the Heraeus F300 MMFs were vertically aligned to the same value at an offset wavelength of 850 nm. The inset figure represents the whole spectra interval available with the OSA used (without offset). (b) Real snapshots of the mechanical and thermal shaped pieces of the same coreless Heraeus F300 rod with a hexagonal shape. The mechanically shaped piece exhibits a bit rough surface compared to the surface of the thermally shaped piece.
Fig. 11.
Fig. 11. (a) The scattering spectra at short wavelengths of the second coreless Heraeus F300 MMFs were vertically aligned to the same value at an offset a wavelength of 850 nm. The inset images represent the cross-sections of the respective fibers. (b) Real longitudinal images of the mechanical-shaped perform pieces. The insets represent their cross-section.
Fig. 12.
Fig. 12. Spectra of OH attenuation peaks, where (a) represent OH attenuation peak of 2v3 @1.38 µm were vertically aligned to the same value at an offset wavelength of 1320 nm, and (b) represent the OH attenuation peak of 3v3 @0.945 µm were vertically aligned to the same value at an offset wavelength of 964 nm. The abbreviations TS and MS denote fibers drawn of thermally-, and mechanically-shaped preforms, respectively.
Fig. 13.
Fig. 13. Spectra of polymer absorption peaks were vertically aligned to the same value at an offset wavelength of 1538 nm. The absorption peak at 1475 nm corresponds to the overtone 2vCHCH [37].

Tables (1)

Tables Icon

Table 1. List of the fabricated MMFs examined in Fig. 9. All the fibers are drawn at an outer diameter of ∼125 µm.

Metrics