Abstract

Interlayer excitons (IX) are produced by the spatially separated electron-hole pairs due to the robust Coulomb interactions in van der Waals transition metal dichalcogenide (TMDC) heterostructures (HSS). IX is characterized by a larger binding energy, and its lifetime is orders of magnitude longer than that of the direct excitons, providing a significant platform for the manufacture of long-lived exciton devices and the exploration of exciton quantum gas. However, the studies are restricted to the single interlayer exciton, and the simultaneous capture and study of double IX remain challenging in the WSe2/WS2 HS. Here, we demonstrate the existence of double indirect IX in the WSe2/WS2 HS with the emission centers at 1.4585eV (∼25.9meV wide) and 1.4885 eV (∼14.4 meV wide) at cryogenic temperature. Interestingly, the intensities of the double IX emission peaks are almost equal, and the energy difference between them is in a good agreement with the cleavage value of the WS2 conduction band (CB). Additionally, diverse types of excitons in the individual materials were successfully observed in the PL spectra at 8 K. Such unique double IX features, in combination with excellent exciton identification, open up new opportunities for further investigations for new physical properties of TMDCs and explorations for the technological innovation of exciton devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Valley-polarized local excitons in WSe2/WS2 vertical heterostructures

Lingkai Cao, Jiahong Zhong, Juan Yu, Cheng Zeng, Junnan Ding, Chunxiao Cong, Xiaofei Yue, Zongwen Liu, and Yanping Liu
Opt. Express 28(15) 22135-22143 (2020)

Graphene/WS2 heterostructure saturable absorbers for ultrashort pulse generation in L-band passively mode-locked fiber lasers

Wenxiong Du, Heping Li, Changyong Lan, Chun Li, Junwen Li, Zhuang Wang, and Yong Liu
Opt. Express 28(8) 11514-11523 (2020)

Demonstration of a polariton step potential by local variation of light-matter coupling in a van-der-Waals heterostructure

C. Rupprecht, M. Klaas, H. Knopf, T. Taniguchi, K. Watanabe, Y. Qin, S. Tongay, S. Schröder, F. Eilenberger, S. Höfling, and C. Schneider
Opt. Express 28(13) 18649-18657 (2020)

References

  • View by:
  • |
  • |
  • |

  1. C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Appl. Phys. Lett. 83(10), 2052–2054 (2003).
    [Crossref]
  2. X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
    [Crossref]
  3. M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett. 77(9), 1339–1341 (2000).
    [Crossref]
  4. B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
    [Crossref]
  5. C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
    [Crossref]
  6. F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
    [Crossref]
  7. S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
    [Crossref]
  8. S. S. Wang, X. C. Wang, and J. H. Warner, “All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures,” ACS Nano 9(5), 5246–5254 (2015).
    [Crossref]
  9. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref]
  10. K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Phys. Rev. Lett. 113(2), 026803 (2014).
    [Crossref]
  11. N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, Intense Two-Dimensional Light Emitter: Mono layer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
    [Crossref]
  12. J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
    [Crossref]
  13. M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
    [Crossref]
  14. Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
    [Crossref]
  15. D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Room-temperature electrical control of exciton flux in a van der Waals heterostructure,” Nature 560(7718), 340–344 (2018).
    [Crossref]
  16. P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
    [Crossref]
  17. B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
    [Crossref]
  18. F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
    [Crossref]
  19. K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
    [Crossref]
  20. J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
    [Crossref]
  21. H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
    [Crossref]
  22. J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
    [Crossref]
  23. M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer,” ACS Nano 11(4), 3832–3840 (2017).
    [Crossref]
  24. P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
    [Crossref]
  25. T. F. Yan, X. F. Qiao, X. N. Liu, P. H. Tan, and X. H. Zhang, “Photoluminescence properties and exciton dynamics in monolayer WSe2,” Appl. Phys. Lett. 105(10), 101901 (2014).
    [Crossref]
  26. A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, and D. K. Maude, “Optical manipulation of the exciton charge state in single-layer tungsten disulfide,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(24), 245403 (2013).
    [Crossref]
  27. A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker, “Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2,” Solid State Commun. 203, 16–20 (2015).
    [Crossref]
  28. W. Shi, M. L. Lin, Q. H. Tan, X. F. Qiao, J. Zhang, and P. H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3(2), 025016 (2016).
    [Crossref]
  29. B. R. Zhu, X. Chen, and X. D. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015).
    [Crossref]
  30. C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
    [Crossref]
  31. G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schuller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi RRL 9(8), 457–461 (2015).
    [Crossref]
  32. N. Peimyoo, W. H. Yang, J. Z. Shang, X. N. Shen, Y. L. Wang, and T. Yu, “Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Mono layer WS2,” ACS Nano 8(11), 11320–11329 (2014).
    [Crossref]
  33. A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
    [Crossref]
  34. E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
    [Crossref]
  35. Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
    [Crossref]
  36. G. B. Liu, W. Y. Shan, Y. G. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(8), 085433 (2013).
    [Crossref]
  37. C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
    [Crossref]
  38. C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
    [Crossref]

2019 (3)

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
[Crossref]

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

2018 (2)

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Room-temperature electrical control of exciton flux in a van der Waals heterostructure,” Nature 560(7718), 340–344 (2018).
[Crossref]

2017 (7)

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref]

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
[Crossref]

C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer,” ACS Nano 11(4), 3832–3840 (2017).
[Crossref]

2016 (4)

P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
[Crossref]

W. Shi, M. L. Lin, Q. H. Tan, X. F. Qiao, J. Zhang, and P. H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3(2), 025016 (2016).
[Crossref]

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

2015 (5)

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

S. S. Wang, X. C. Wang, and J. H. Warner, “All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures,” ACS Nano 9(5), 5246–5254 (2015).
[Crossref]

B. R. Zhu, X. Chen, and X. D. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015).
[Crossref]

A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker, “Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2,” Solid State Commun. 203, 16–20 (2015).
[Crossref]

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schuller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi RRL 9(8), 457–461 (2015).
[Crossref]

2014 (6)

N. Peimyoo, W. H. Yang, J. Z. Shang, X. N. Shen, Y. L. Wang, and T. Yu, “Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Mono layer WS2,” ACS Nano 8(11), 11320–11329 (2014).
[Crossref]

T. F. Yan, X. F. Qiao, X. N. Liu, P. H. Tan, and X. H. Zhang, “Photoluminescence properties and exciton dynamics in monolayer WSe2,” Appl. Phys. Lett. 105(10), 101901 (2014).
[Crossref]

K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref]

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref]

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

2013 (7)

N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, Intense Two-Dimensional Light Emitter: Mono layer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref]

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, and D. K. Maude, “Optical manipulation of the exciton charge state in single-layer tungsten disulfide,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(24), 245403 (2013).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

G. B. Liu, W. Y. Shan, Y. G. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(8), 085433 (2013).
[Crossref]

2010 (2)

F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

2003 (1)

C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Appl. Phys. Lett. 83(10), 2052–2054 (2003).
[Crossref]

2000 (1)

M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett. 77(9), 1339–1341 (2000).
[Crossref]

Adhikari, S.

M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer,” ACS Nano 11(4), 3832–3840 (2017).
[Crossref]

Aivazian, G.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Ajayan, P. M.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Altaiary, M. M.

E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
[Crossref]

Ashoori, R. C.

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

Avsar, A.

D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Room-temperature electrical control of exciton flux in a van der Waals heterostructure,” Nature 560(7718), 340–344 (2018).
[Crossref]

Baranowski, M.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

Bellus, M. Z.

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref]

Bjork, M. T.

C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Appl. Phys. Lett. 83(10), 2052–2054 (2003).
[Crossref]

Cai, H.

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

Ceballos, F.

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref]

Chen, B.

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

Chen, H. L.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Chen, M.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Chen, P.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Chen, W.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Chen, X.

B. R. Zhu, X. Chen, and X. D. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015).
[Crossref]

Chen, X. D.

C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Chen, Y. W.

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

Cheng, Z. Z.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Chiu, H. Y.

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref]

Chou, M.-Y.

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
[Crossref]

Chuu, C.-P.

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
[Crossref]

Ciarrocchi, A.

D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Room-temperature electrical control of exciton flux in a van der Waals heterostructure,” Nature 560(7718), 340–344 (2018).
[Crossref]

Clark, G.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

Cobden, D.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

Cong, C. X.

N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, Intense Two-Dimensional Light Emitter: Mono layer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref]

Crommie, M. F.

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

Cui, X. D.

B. R. Zhu, X. Chen, and X. D. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015).
[Crossref]

Currie, M.

A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker, “Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2,” Solid State Commun. 203, 16–20 (2015).
[Crossref]

Dean, C. R.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Doan, M. H.

M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer,” ACS Nano 11(4), 3832–3840 (2017).
[Crossref]

Dong, Y.

C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Du, H. D.

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

Duan, W. H.

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

Dumcenco, D.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

Escoffier, W.

A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, and D. K. Maude, “Optical manipulation of the exciton charge state in single-layer tungsten disulfide,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(24), 245403 (2013).
[Crossref]

Fan, W.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Forsythe, C.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Friedman, A. L.

A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker, “Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2,” Solid State Commun. 203, 16–20 (2015).
[Crossref]

Fu, D. Y.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Gan, L.

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

Gao, Y.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Gaska, R.

M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett. 77(9), 1339–1341 (2000).
[Crossref]

Ghahari, F.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Ghimire, N. J.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Gong, M.

C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Gong, Y. J.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Guo, G. C.

C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Hanbicki, A. T.

A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker, “Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2,” Solid State Commun. 203, 16–20 (2015).
[Crossref]

He, K. L.

K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref]

Heinz, T. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

Holleitner, A.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref]

Hone, J.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

Hu, X.

M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett. 77(9), 1339–1341 (2000).
[Crossref]

Hunt, B.

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

Iqbal Bakti Utama, M.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Ishigami, M.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Jadczak, J. N.

A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, and D. K. Maude, “Optical manipulation of the exciton charge state in single-layer tungsten disulfide,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(24), 245403 (2013).
[Crossref]

Jahnke, F.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref]

Jarillo-Herrero, P.

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

Ji, J.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Jia, Z. Y.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Jin, C.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
[Crossref]

Jin, C. H.

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

Jin, Y.

M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer,” ACS Nano 11(4), 3832–3840 (2017).
[Crossref]

Jones, A. M.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Jonker, B. T.

A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker, “Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2,” Solid State Commun. 203, 16–20 (2015).
[Crossref]

Kahn, S.

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

Kang, F. Y.

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

Katoch, J.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Khan, M. A.

M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett. 77(9), 1339–1341 (2000).
[Crossref]

Kim, J.

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

Kim, P.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Kioseoglou, G.

A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker, “Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2,” Solid State Commun. 203, 16–20 (2015).
[Crossref]

Kis, A.

D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Room-temperature electrical control of exciton flux in a van der Waals heterostructure,” Nature 560(7718), 340–344 (2018).
[Crossref]

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

Klein, J.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref]

Klement, P.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

Klopotowski, L.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

Korn, T.

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schuller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi RRL 9(8), 457–461 (2015).
[Crossref]

Koshino, M.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

Kraus, J.

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schuller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi RRL 9(8), 457–461 (2015).
[Crossref]

Kulyuk, L.

A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, and D. K. Maude, “Optical manipulation of the exciton charge state in single-layer tungsten disulfide,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(24), 245403 (2013).
[Crossref]

Kumar, N.

K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref]

Kung, Y. C.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

Larsson, M. W.

C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Appl. Phys. Lett. 83(10), 2052–2054 (2003).
[Crossref]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

Lee, P.

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

Lee, S.

M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer,” ACS Nano 11(4), 3832–3840 (2017).
[Crossref]

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Lee, Y. H.

M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer,” ACS Nano 11(4), 3832–3840 (2017).
[Crossref]

Lee-Wong, E.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

Lei, S. D.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

LeRoy, B. J.

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

Li, C. C.

C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Li, J.

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

Li, L.-J.

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
[Crossref]

Li, M.-Y.

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
[Crossref]

Li, S.

C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Li, Z. P.

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

Lian, Z.

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

Lim, S. C.

M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer,” ACS Nano 11(4), 3832–3840 (2017).
[Crossref]

Lin, J. H.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Lin, M. L.

W. Shi, M. L. Lin, Q. H. Tan, X. F. Qiao, J. Zhang, and P. H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3(2), 025016 (2016).
[Crossref]

Lin, Z.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Liu, E. F.

E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
[Crossref]

Liu, G. B.

G. B. Liu, W. Y. Shan, Y. G. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(8), 085433 (2013).
[Crossref]

Liu, K.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Liu, K. H.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Liu, X. N.

T. F. Yan, X. F. Qiao, X. N. Liu, P. H. Tan, and X. H. Zhang, “Photoluminescence properties and exciton dynamics in monolayer WSe2,” Appl. Phys. Lett. 105(10), 101901 (2014).
[Crossref]

Liu, Z.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Lou, J.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Lu, X. B.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Lu, Z. G.

E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
[Crossref]

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

Lui, C. H.

E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
[Crossref]

Mackowski, S.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

Maher, P.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Mak, K. F.

K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

Mandrus, D.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

Mandrus, D. G.

P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Martensson, T.

C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Appl. Phys. Lett. 83(10), 2052–2054 (2003).
[Crossref]

Maude, D. K.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, and D. K. Maude, “Optical manipulation of the exciton charge state in single-layer tungsten disulfide,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(24), 245403 (2013).
[Crossref]

Meng, Y. Z.

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

Miller, B.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref]

Mitioglu, A. A.

A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, and D. K. Maude, “Optical manipulation of the exciton charge state in single-layer tungsten disulfide,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(24), 245403 (2013).
[Crossref]

Moon, P.

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Nagler, P.

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schuller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi RRL 9(8), 457–461 (2015).
[Crossref]

Neaton, J. B.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Ohlsson, B. J.

C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Appl. Phys. Lett. 83(10), 2052–2054 (2003).
[Crossref]

Pano, B.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref]

Pantelides, S. T.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Paradiso, N.

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schuller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi RRL 9(8), 457–461 (2015).
[Crossref]

Peimyoo, N.

N. Peimyoo, W. H. Yang, J. Z. Shang, X. N. Shen, Y. L. Wang, and T. Yu, “Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Mono layer WS2,” ACS Nano 8(11), 11320–11329 (2014).
[Crossref]

N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, Intense Two-Dimensional Light Emitter: Mono layer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref]

Plechinger, G.

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schuller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi RRL 9(8), 457–461 (2015).
[Crossref]

Plochocka, P.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, and D. K. Maude, “Optical manipulation of the exciton charge state in single-layer tungsten disulfide,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(24), 245403 (2013).
[Crossref]

Qiao, X. F.

W. Shi, M. L. Lin, Q. H. Tan, X. F. Qiao, J. Zhang, and P. H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3(2), 025016 (2016).
[Crossref]

T. F. Yan, X. F. Qiao, X. N. Liu, P. H. Tan, and X. H. Zhang, “Photoluminescence properties and exciton dynamics in monolayer WSe2,” Appl. Phys. Lett. 105(10), 101901 (2014).
[Crossref]

Qin, Y.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Regan, E. C.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Ren, X.

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
[Crossref]

Rikken, G. L. J. A.

A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, and D. K. Maude, “Optical manipulation of the exciton charge state in single-layer tungsten disulfide,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(24), 245403 (2013).
[Crossref]

Rivera, P.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

Ross, J. S.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Samuelson, L.

C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Appl. Phys. Lett. 83(10), 2052–2054 (2003).
[Crossref]

Sanchez-Yamagishi, J. D.

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

Schaibley, J.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

Schaibley, J. R.

P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

Schuller, C.

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schuller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi RRL 9(8), 457–461 (2015).
[Crossref]

Schwierz, F.

F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
[Crossref]

Seyler, K.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

Seyler, K. L.

P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
[Crossref]

Shan, J.

K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

Shan, W. Y.

G. B. Liu, W. Y. Shan, Y. G. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(8), 085433 (2013).
[Crossref]

Shang, J. Z.

N. Peimyoo, W. H. Yang, J. Z. Shang, X. N. Shen, Y. L. Wang, and T. Yu, “Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Mono layer WS2,” ACS Nano 8(11), 11320–11329 (2014).
[Crossref]

N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, Intense Two-Dimensional Light Emitter: Mono layer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref]

Shen, X. N.

N. Peimyoo, W. H. Yang, J. Z. Shang, X. N. Shen, Y. L. Wang, and T. Yu, “Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Mono layer WS2,” ACS Nano 8(11), 11320–11329 (2014).
[Crossref]

N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, Intense Two-Dimensional Light Emitter: Mono layer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref]

Shepard, K. L.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Shi, D. X.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Shi, G.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Shi, S.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Shi, S. F.

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

Shi, W.

W. Shi, M. L. Lin, Q. H. Tan, X. F. Qiao, J. Zhang, and P. H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3(2), 025016 (2016).
[Crossref]

Shih, C.-K.

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
[Crossref]

Shur, M. S.

M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett. 77(9), 1339–1341 (2000).
[Crossref]

Simin, G.

M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett. 77(9), 1339–1341 (2000).
[Crossref]

Smirnov, D.

E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
[Crossref]

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

Steinhoff, A.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref]

Strunk, C.

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schuller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi RRL 9(8), 457–461 (2015).
[Crossref]

Suh, J.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Sun, F. W.

C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Sun, Y.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Sun, Y. H.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Surrente, A.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

Tan, P. H.

W. Shi, M. L. Lin, Q. H. Tan, X. F. Qiao, J. Zhang, and P. H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3(2), 025016 (2016).
[Crossref]

T. F. Yan, X. F. Qiao, X. N. Liu, P. H. Tan, and X. H. Zhang, “Photoluminescence properties and exciton dynamics in monolayer WSe2,” Appl. Phys. Lett. 105(10), 101901 (2014).
[Crossref]

Tan, Q. H.

W. Shi, M. L. Lin, Q. H. Tan, X. F. Qiao, J. Zhang, and P. H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3(2), 025016 (2016).
[Crossref]

Taniguchi, T.

E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
[Crossref]

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Room-temperature electrical control of exciton flux in a van der Waals heterostructure,” Nature 560(7718), 340–344 (2018).
[Crossref]

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Tarakji, A.

M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett. 77(9), 1339–1341 (2000).
[Crossref]

Tay, B. K.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Terrones, H.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Terrones, M.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Thelander, C.

C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Appl. Phys. Lett. 83(10), 2052–2054 (2003).
[Crossref]

Tongay, S.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Tsang, H. K.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Unuchek, D.

D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Room-temperature electrical control of exciton flux in a van der Waals heterostructure,” Nature 560(7718), 340–344 (2018).
[Crossref]

Urban, J. M.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

Vajtai, R.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

van Baren, J.

E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
[Crossref]

Wallenberg, L. R.

C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Appl. Phys. Lett. 83(10), 2052–2054 (2003).
[Crossref]

Wang, D.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Wang, F.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

Wang, J. H.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Wang, K.

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

Wang, L.

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

Wang, S. S.

S. S. Wang, X. C. Wang, and J. H. Warner, “All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures,” ACS Nano 9(5), 5246–5254 (2015).
[Crossref]

Wang, T. M.

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

Wang, X. C.

S. S. Wang, X. C. Wang, and J. H. Warner, “All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures,” ACS Nano 9(5), 5246–5254 (2015).
[Crossref]

Wang, X. L.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Wang, X. M.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Wang, Y. L.

N. Peimyoo, W. H. Yang, J. Z. Shang, X. N. Shen, Y. L. Wang, and T. Yu, “Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Mono layer WS2,” ACS Nano 8(11), 11320–11329 (2014).
[Crossref]

Wang, Z. F.

K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref]

Warner, J. H.

S. S. Wang, X. C. Wang, and J. H. Warner, “All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures,” ACS Nano 9(5), 5246–5254 (2015).
[Crossref]

Watanabe, K.

E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
[Crossref]

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Room-temperature electrical control of exciton flux in a van der Waals heterostructure,” Nature 560(7718), 340–344 (2018).
[Crossref]

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

Wen, X. W.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Wiwatowski, K.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

Wu, J. Q.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Wu, S.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Wu, S. F.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Wu, T. M.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Wu, X. Y.

N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, Intense Two-Dimensional Light Emitter: Mono layer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref]

Wurstbauer, U.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref]

Xiang, J. Y.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Xiao, D.

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

G. B. Liu, W. Y. Shan, Y. G. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(8), 085433 (2013).
[Crossref]

Xie, G. B.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Xu, C. J.

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

Xu, J. B.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, K.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, X.

P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
[Crossref]

Xu, X. D.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Xu, X. L.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Yakobson, B. I.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Yan, A.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Yan, J.

P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
[Crossref]

Yan, J. Q.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Yan, Q. M.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Yan, T. F.

T. F. Yan, X. F. Qiao, X. N. Liu, P. H. Tan, and X. H. Zhang, “Photoluminescence properties and exciton dynamics in monolayer WSe2,” Appl. Phys. Lett. 105(10), 101901 (2014).
[Crossref]

Yang, J.

M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett. 77(9), 1339–1341 (2000).
[Crossref]

Yang, R.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Yang, S.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Yang, W. H.

N. Peimyoo, W. H. Yang, J. Z. Shang, X. N. Shen, Y. L. Wang, and T. Yu, “Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Mono layer WS2,” ACS Nano 8(11), 11320–11329 (2014).
[Crossref]

Yankowitz, M.

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

Yao, W.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

G. B. Liu, W. Y. Shan, Y. G. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(8), 085433 (2013).
[Crossref]

Yao, Y. G.

G. B. Liu, W. Y. Shan, Y. G. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(8), 085433 (2013).
[Crossref]

Ye, G. L.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Yeow, E. K. L.

N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, Intense Two-Dimensional Light Emitter: Mono layer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref]

Yi, C. Y.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Young, A. F.

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

Yu, H.

P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
[Crossref]

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Yu, H. Y.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Yu, T.

N. Peimyoo, W. H. Yang, J. Z. Shang, X. N. Shen, Y. L. Wang, and T. Yu, “Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Mono layer WS2,” ACS Nano 8(11), 11320–11329 (2014).
[Crossref]

N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, Intense Two-Dimensional Light Emitter: Mono layer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref]

Yuan, J. T.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Zettl, A.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Zhang, C.

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
[Crossref]

Zhang, G. Y.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Zhang, J.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

W. Shi, M. L. Lin, Q. H. Tan, X. F. Qiao, J. Zhang, and P. H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3(2), 025016 (2016).
[Crossref]

Zhang, N.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

Zhang, S. B.

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

Zhang, X.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Zhang, X. H.

T. F. Yan, X. F. Qiao, X. N. Liu, P. H. Tan, and X. H. Zhang, “Photoluminescence properties and exciton dynamics in monolayer WSe2,” Appl. Phys. Lett. 105(10), 101901 (2014).
[Crossref]

Zhao, B.

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Zhao, B. W.

C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Zhao, H.

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref]

K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref]

Zhao, J.

M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer,” ACS Nano 11(4), 3832–3840 (2017).
[Crossref]

Zhao, L.

K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref]

Zhao, S.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Zhao, S. Y.

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

Zhao, T.

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

Zheng, J. R.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Zheng, Z.

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Zhou, J.

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

Zhou, W.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Zhu, B. R.

B. R. Zhu, X. Chen, and X. D. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015).
[Crossref]

Zhu, J. Q.

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Zhuang, W.

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Zou, X. L.

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

2D Mater. (1)

W. Shi, M. L. Lin, Q. H. Tan, X. F. Qiao, J. Zhang, and P. H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3(2), 025016 (2016).
[Crossref]

ACS Nano (5)

M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer,” ACS Nano 11(4), 3832–3840 (2017).
[Crossref]

N. Peimyoo, W. H. Yang, J. Z. Shang, X. N. Shen, Y. L. Wang, and T. Yu, “Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Mono layer WS2,” ACS Nano 8(11), 11320–11329 (2014).
[Crossref]

S. S. Wang, X. C. Wang, and J. H. Warner, “All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures,” ACS Nano 9(5), 5246–5254 (2015).
[Crossref]

N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, Intense Two-Dimensional Light Emitter: Mono layer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref]

F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure,” ACS Nano 8(12), 12717–12724 (2014).
[Crossref]

Adv. Mater. (1)

J. Zhang, J. H. Wang, P. Chen, Y. Sun, S. Wu, Z. Y. Jia, X. B. Lu, H. Yu, W. Chen, J. Q. Zhu, G. B. Xie, R. Yang, D. X. Shi, X. L. Xu, J. Y. Xiang, K. H. Liu, and G. Y. Zhang, “Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures,” Adv. Mater. 28(10), 1950–1956 (2016).
[Crossref]

Appl. Phys. Lett. (3)

T. F. Yan, X. F. Qiao, X. N. Liu, P. H. Tan, and X. H. Zhang, “Photoluminescence properties and exciton dynamics in monolayer WSe2,” Appl. Phys. Lett. 105(10), 101901 (2014).
[Crossref]

C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Appl. Phys. Lett. 83(10), 2052–2054 (2003).
[Crossref]

M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Appl. Phys. Lett. 77(9), 1339–1341 (2000).
[Crossref]

Diamond Relat. Mater. (1)

C. C. Li, M. Gong, X. D. Chen, S. Li, B. W. Zhao, Y. Dong, G. C. Guo, and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Nano Lett. (4)

K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, “Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett. 14(9), 5097–5103 (2014).
[Crossref]

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Y. Yu, T. Taniguchi, K. Watanabe, J. Q. Yan, D. Mandrus, D. Cobden, W. Yao, and X. D. Xu, “Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction,” Nano Lett. 17(2), 638–643 (2017).
[Crossref]

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref]

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17(9), 5229–5237 (2017).
[Crossref]

Nano Res. (1)

S. Y. Zhao, K. Wang, X. L. Zou, L. Gan, H. D. Du, C. J. Xu, F. Y. Kang, W. H. Duan, and J. Li, “Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen,” Nano Res. 12(4), 925–930 (2019).
[Crossref]

Nat. Commun. (3)

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6(1), 6242 (2015).
[Crossref]

Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. B. Zhang, D. Smirnov, and S. F. Shi, “Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2,” Nat. Commun. 9(1), 3719 (2018).
[Crossref]

H. L. Chen, X. W. Wen, J. Zhang, T. M. Wu, Y. J. Gong, X. Zhang, J. T. Yuan, C. Y. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Y. Zhang, and J. R. Zheng, “Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures,” Nat. Commun. 7(1), 12512 (2016).
[Crossref]

Nat. Mater. (1)

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13(12), 1135–1142 (2014).
[Crossref]

Nat. Nanotechnol. (2)

F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
[Crossref]

A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref]

Nat. Photonics (1)

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Nature (3)

C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, “Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices,” Nature 497(7451), 598–602 (2013).
[Crossref]

D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Room-temperature electrical control of exciton flux in a van der Waals heterostructure,” Nature 560(7718), 340–344 (2018).
[Crossref]

C. Jin, E. C. Regan, A. Yan, M. Iqbal Bakti Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Observation of moiré excitons in WSe2/WS2 heterostructure superlattices,” Nature 567(7746), 76–80 (2019).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (2)

G. B. Liu, W. Y. Shan, Y. G. Yao, W. Yao, and D. Xiao, “Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(8), 085433 (2013).
[Crossref]

A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L. J. A. Rikken, L. Kulyuk, and D. K. Maude, “Optical manipulation of the exciton charge state in single-layer tungsten disulfide,” Phys. Rev. B: Condens. Matter Mater. Phys. 88(24), 245403 (2013).
[Crossref]

Phys. Rev. Lett. (3)

E. F. Liu, J. van Baren, Z. G. Lu, M. M. Altaiary, T. Taniguchi, K. Watanabe, D. Smirnov, and C. H. Lui, “Gate Tunable Dark Trions in Monolayer WSe2,” Phys. Rev. Lett. 123(2), 027401 (2019).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly Bound Excitons in Monolayer WSe2,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref]

Phys. Status Solidi RRL (1)

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schuller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi RRL 9(8), 457–461 (2015).
[Crossref]

Sci. Adv. (2)

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,” Sci. Adv. 3(1), e1601459 (2017).
[Crossref]

J. Kim, C. H. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures,” Sci. Adv. 3(7), e1700518 (2017).
[Crossref]

Sci. Rep. (1)

B. R. Zhu, X. Chen, and X. D. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015).
[Crossref]

Science (2)

P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,” Science 351(6274), 688–691 (2016).
[Crossref]

B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science 340(6139), 1427–1430 (2013).
[Crossref]

Solid State Commun. (1)

A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker, “Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2,” Solid State Commun. 203, 16–20 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Construction of van der Waals hBN/WSe2/WS2/hBN heterostructure. (a) The optical image of the van der Waals hBN/WSe2/WS2/hBN heterostructure. The monolayer WSe2, the monolayer WS2, and the top-hBN areas are marked with blue, red, and green curves, respectively. The purple areas indicate the heterostructure areas. (b) The schematic diagram of hBN/WSe2/WS2/hBN heterostructure. The WSe2/WS2 heterostructure is encapsulated with the bottom-hBN and top-hBN on Si substrate covered with a 285 nm SiO2 layer. (c) The photoluminescence spectra of the monolayer WSe2, the monolayer WS2, and heterostructure under the 532 nm excitation at 300 K. The insert in the upper left corner shows the band arrangement of the WSe2/WS2 HS, and visually indicates the intralayer (X0) and interlayer (IX) excitons. The arrows show the directions of carrier transition. (d) The Raman spectra of the monolayer WSe2, the monolayer WS2, and heterostructure at 300 K.
Fig. 2.
Fig. 2. Photoluminescence mapping of van der Waals hBN/WSe2/WS2/hBN heterostructure at 300 K. (a) The mapping scan areas of the device, including the monolayer WSe2, the monolayer WS2, and the heterostructure areas. The different areas of various materials are indicated in the diagram. (b,c) The photoluminescence mapping of the monolayer WS2 (b), and the monolayer WSe2 (c), respectively. The PL intensity integration ranges of 1.90 to 1.98 eV and 1.62 to 1.68 eV were selected in WS2 (b) and WSe2 (c), respectively. Only the monolayer regions exhibit a higher PL intensity, while the heterostructure region is significantly quenched. (d) A combined color map of (b) and (c). The monolayer WSe2, and the monolayer WS2 are represented by red and blue, respectively.
Fig. 3.
Fig. 3. Photoluminescence characteristics of the monolayer TMDCs under the variable temperatures. (a) The normalized PL spectra of the monolayer WSe2 as a function of the temperature, varying from 300 K to 8 K. The temperatures corresponding to the PL spectrum are shown on the left. The dashed curves indicate the shift of exciton energy as a function of temperature. The types of the excitons corresponding to each PL peak are marked on the spectrum at 8 K, which are neutral exciton (X0), intravalley trion (Xintra), intervalley trion (Xinter), negatively charged biexciton (XX), charged dark trion (X), and local exciton (XL), respectively. (b) The normalized PL spectra of the monolayer WS2 as a function of the temperature (50K∼300 K). The dashed curves indicate the shift of exciton energy with temperature. The types of the excitons corresponding to each PL peak are marked on the spectrum at 8 K, which are neutral exciton (X0), negatively charge trion (X), and biexciton (XX), respectively.
Fig. 4.
Fig. 4. Optical characteristics of interlayer excitons in van der Waals hBN/WSe2/WS2/hBN heterostructure under the variable temperatures (8K∼250 K). (a) The PL spectra of interlayer excitons in the heterostructure. The PL spectra under different temperatures are shown in different colors. As the temperature decreases, the interlayer exciton gradually changes from one to two, labeled IX1 and IX2, respectively. The energy difference between the two interlayer excitons is ascertained to be 30 meV. (b) The heat map of interlayer excitons as a function of temperature with the same data from Fig. 4(a). (c) The schematic energy band of hBN/WSe2/WS2/hBN heterostructure. The red and blue single arrows represent spin-up and spin-down electrons, respectively. The green and purple dashed double arrows indicate the formation of interlayer exciton IX1 and IX2, which are constituted by electrons from WS2 and holes from WSe2.

Tables (1)

Tables Icon

Table 1. Energy of the different compound excitons relative to the bright exciton X0 presenting in the PL spectra. (Δ is the energy difference between bright exciton X0 and X (Xinter, Xintra, XX, X, and XL) exciton.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E g ( T ) = E 0 α T 2 / ( T + β )

Metrics