Abstract

We demonstrate a method to synthesize ultra-high repetition rate bursts of ultrashort laser pulses containing any number of pulses within a burst with identical pulse separation and adjustable amplitude. The key element to synthesize the GHz bursts of ultrashort laser pulses is an active fiber loop. The method was implemented in the fiber chirped pulse amplification system to obtain 72 nJ-energy bursts of 20 pulses with a 2.65 GHz intra-burst pulse repetition rate and a 500 kHz burst repetition rate. The dispersion compensation mechanism ensured a mean pulse duration of 570 fs within the bursts.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. National Academies of Sciences, Engineering, and Medicine, Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light (The National Academies, 2018).
  2. K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Appl. Phys. Rev. 1(4), 041303 (2014).
    [Crossref]
  3. K. Sugioka, “Progress in ultrafast laser processing and future prospects,” Nanophotonics 6(2), 393–413 (2017).
    [Crossref]
  4. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  5. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
    [Crossref]
  6. M. Gedvilas, S. Indrišiūnas, B. Voisiat, E. Stankevičius, A. Selskis, and G. Račiukaitis, “Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon,” Phys. Chem. Chem. Phys. 20(17), 12166–12174 (2018).
    [Crossref]
  7. S. Gao and H. Huang, “Recent advances in micro- and nano-machining technologies,” Front. Mech. Eng. 12(1), 18–32 (2017).
    [Crossref]
  8. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  9. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [Crossref]
  10. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
    [Crossref]
  11. C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
    [Crossref]
  12. P. Elahi, Ö. Akçaalan, C. Ertek, K. Eken, F. Ö. Ilday, and H. Kalaycoğlu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018).
    [Crossref]
  13. J. Liu, X. Li, S. Zhang, M. Han, H. Han, and Z. Yang, “Wavelength-tunable burst-mode pulse with controllable pulse numbers and pulse intervals,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
    [Crossref]
  14. X. Wolters, G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, and E. Mottay, “High power GHz femtosecond laser for ablation efficiency increase,” Procedia Manuf. 36, 200–207 (2019).
    [Crossref]
  15. A. Okhrimchuk, S. Fedotov, I. Glebov, V. Sigaev, and P. Kazansky, “Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses,” Sci. Rep. 7(1), 16563–11 (2017).
    [Crossref]
  16. I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
    [Crossref]
  17. F. Zimmermann, S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Ultrastable bonding of glass with femtosecond laser bursts,” Appl. Opt. 52(6), 1149–1154 (2013).
    [Crossref]
  18. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
    [Crossref]
  19. G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, and I. Manek-Hönninger, “High efficiency femtosecond laser ablation with gigahertz level bursts,” J. Laser Appl. 31(2), 022205 (2019).
    [Crossref]
  20. P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, and Y. Taillon, “Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source,” Proc. SPIE 7914, 791404 (2011).
    [Crossref]
  21. C. Gaudiuso, G. Giannuzzi, A. Volpe, P. M. Lugarà, I. Choquet, and A. Ancona, “Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays,” Opt. Express 26(4), 3801–3813 (2018).
    [Crossref]
  22. D. Y. Tang, J. Guo, Y. F. Song, L. Li, L. M. Zhao, and D. Y. Shen, “GHz pulse train generation in fiber lasers by cavity induced modulation instability,” Opt. Fiber Technol. 20(6), 610–614 (2014).
    [Crossref]
  23. R. Maram, L. R. Cortés, J. van Howe, and J. Azaña, “Energy-preserving arbitrary repetition-rate control of periodic pulse trains using temporal talbot effects,” J. Lightwave Technol. 35(4), 658–668 (2017).
    [Crossref]
  24. T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.
  25. C. W. Siders, J. L. W. Siders, A. J. Taylor, S.-G. Park, and A. M. Weiner, “Efficient high-energy pulse-train generation using a 2^n-pulse michelson interferometer,” Appl. Opt. 37(22), 5302–5305 (1998).
    [Crossref]
  26. H. Matsumoto, Z. Lin, and J. Kleinert, “Ultrafast laser ablation of copper with ∼GHz bursts,” Proc. SPIE 10519, 1 (2018).
    [Crossref]
  27. B. Dromey, M. Zepf, M. Landreman, K. O’Keeffe, T. Robinson, and S. M. Hooker, “Generation of a train of ultrashort pulses from a compact birefringent crystal array,” Appl. Opt. 46(22), 5142–5146 (2007).
    [Crossref]
  28. S.-s. Min, Y. Zhao, and S. Fleming, “Repetition rate multiplication in figure-eight fibre laser with 3 dB couplers,” Opt. Commun. 277(2), 411–413 (2007).
    [Crossref]
  29. C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
    [Crossref]
  30. Y. Zhao, S.-s. Min, H.-c. Wang, and S. Fleming, “High-power figure-of-eight fiber laser with passive sub-ring loops for repetition rate control,” Opt. Express 14(22), 10475–10480 (2006).
    [Crossref]
  31. K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125µm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
    [Crossref]
  32. K.-H. Wei, P.-P. Jiang, B. Wu, T. Chen, and Y.-H. Shen, “Fiber laser pumped burst-mode operated picosecond mid-infrared laser,” Chin. Phys. B 24(2), 024217 (2015).
    [Crossref]

2019 (3)

J. Liu, X. Li, S. Zhang, M. Han, H. Han, and Z. Yang, “Wavelength-tunable burst-mode pulse with controllable pulse numbers and pulse intervals,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

X. Wolters, G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, and E. Mottay, “High power GHz femtosecond laser for ablation efficiency increase,” Procedia Manuf. 36, 200–207 (2019).
[Crossref]

G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, and I. Manek-Hönninger, “High efficiency femtosecond laser ablation with gigahertz level bursts,” J. Laser Appl. 31(2), 022205 (2019).
[Crossref]

2018 (4)

P. Elahi, Ö. Akçaalan, C. Ertek, K. Eken, F. Ö. Ilday, and H. Kalaycoğlu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018).
[Crossref]

M. Gedvilas, S. Indrišiūnas, B. Voisiat, E. Stankevičius, A. Selskis, and G. Račiukaitis, “Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon,” Phys. Chem. Chem. Phys. 20(17), 12166–12174 (2018).
[Crossref]

C. Gaudiuso, G. Giannuzzi, A. Volpe, P. M. Lugarà, I. Choquet, and A. Ancona, “Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays,” Opt. Express 26(4), 3801–3813 (2018).
[Crossref]

H. Matsumoto, Z. Lin, and J. Kleinert, “Ultrafast laser ablation of copper with ∼GHz bursts,” Proc. SPIE 10519, 1 (2018).
[Crossref]

2017 (4)

R. Maram, L. R. Cortés, J. van Howe, and J. Azaña, “Energy-preserving arbitrary repetition-rate control of periodic pulse trains using temporal talbot effects,” J. Lightwave Technol. 35(4), 658–668 (2017).
[Crossref]

S. Gao and H. Huang, “Recent advances in micro- and nano-machining technologies,” Front. Mech. Eng. 12(1), 18–32 (2017).
[Crossref]

K. Sugioka, “Progress in ultrafast laser processing and future prospects,” Nanophotonics 6(2), 393–413 (2017).
[Crossref]

A. Okhrimchuk, S. Fedotov, I. Glebov, V. Sigaev, and P. Kazansky, “Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses,” Sci. Rep. 7(1), 16563–11 (2017).
[Crossref]

2016 (4)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125µm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

2015 (1)

K.-H. Wei, P.-P. Jiang, B. Wu, T. Chen, and Y.-H. Shen, “Fiber laser pumped burst-mode operated picosecond mid-infrared laser,” Chin. Phys. B 24(2), 024217 (2015).
[Crossref]

2014 (3)

D. Y. Tang, J. Guo, Y. F. Song, L. Li, L. M. Zhao, and D. Y. Shen, “GHz pulse train generation in fiber lasers by cavity induced modulation instability,” Opt. Fiber Technol. 20(6), 610–614 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Appl. Phys. Rev. 1(4), 041303 (2014).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

2013 (4)

2011 (1)

P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, and Y. Taillon, “Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source,” Proc. SPIE 7914, 791404 (2011).
[Crossref]

2007 (2)

B. Dromey, M. Zepf, M. Landreman, K. O’Keeffe, T. Robinson, and S. M. Hooker, “Generation of a train of ultrashort pulses from a compact birefringent crystal array,” Appl. Opt. 46(22), 5142–5146 (2007).
[Crossref]

S.-s. Min, Y. Zhao, and S. Fleming, “Repetition rate multiplication in figure-eight fibre laser with 3 dB couplers,” Opt. Commun. 277(2), 411–413 (2007).
[Crossref]

2006 (1)

2003 (1)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

1998 (1)

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Akçaalan, Ö

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Akçaalan, Ö.

P. Elahi, Ö. Akçaalan, C. Ertek, K. Eken, F. Ö. Ilday, and H. Kalaycoğlu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Ancona, A.

Andriukaitis, G.

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Astrauskas, I.

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Audouard, E.

G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, and I. Manek-Hönninger, “High efficiency femtosecond laser ablation with gigahertz level bursts,” J. Laser Appl. 31(2), 022205 (2019).
[Crossref]

X. Wolters, G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, and E. Mottay, “High power GHz femtosecond laser for ablation efficiency increase,” Procedia Manuf. 36, 200–207 (2019).
[Crossref]

Azaña, J.

Balciunas, T.

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Baltuška, A.

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Barkauskas, M.

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Bellouard, Y.

Beresna, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref]

Bonamis, G.

X. Wolters, G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, and E. Mottay, “High power GHz femtosecond laser for ablation efficiency increase,” Procedia Manuf. 36, 200–207 (2019).
[Crossref]

G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, and I. Manek-Hönninger, “High efficiency femtosecond laser ablation with gigahertz level bursts,” J. Laser Appl. 31(2), 022205 (2019).
[Crossref]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Briand, M.

P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, and Y. Taillon, “Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source,” Proc. SPIE 7914, 791404 (2011).
[Crossref]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Çetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Champion, A.

Chen, T.

K.-H. Wei, P.-P. Jiang, B. Wu, T. Chen, and Y.-H. Shen, “Fiber laser pumped burst-mode operated picosecond mid-infrared laser,” Chin. Phys. B 24(2), 024217 (2015).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Appl. Phys. Rev. 1(4), 041303 (2014).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Choquet, I.

Corbari, C.

Cortés, L. R.

Cournoyer, A.

P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, and Y. Taillon, “Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source,” Proc. SPIE 7914, 791404 (2011).
[Crossref]

Cvecek, K.

Danielius, R.

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Deladurantaye, P.

P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, and Y. Taillon, “Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source,” Proc. SPIE 7914, 791404 (2011).
[Crossref]

Desbiens, L.

P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, and Y. Taillon, “Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source,” Proc. SPIE 7914, 791404 (2011).
[Crossref]

Döring, S.

Drolet, M.

P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, and Y. Taillon, “Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source,” Proc. SPIE 7914, 791404 (2011).
[Crossref]

Dromey, B.

Eken, K.

Elahi, P.

P. Elahi, Ö. Akçaalan, C. Ertek, K. Eken, F. Ö. Ilday, and H. Kalaycoğlu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Ertek, C.

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Fedotov, S.

A. Okhrimchuk, S. Fedotov, I. Glebov, V. Sigaev, and P. Kazansky, “Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses,” Sci. Rep. 7(1), 16563–11 (2017).
[Crossref]

Fleming, S.

S.-s. Min, Y. Zhao, and S. Fleming, “Repetition rate multiplication in figure-eight fibre laser with 3 dB couplers,” Opt. Commun. 277(2), 411–413 (2007).
[Crossref]

Y. Zhao, S.-s. Min, H.-c. Wang, and S. Fleming, “High-power figure-of-eight fiber laser with passive sub-ring loops for repetition rate control,” Opt. Express 14(22), 10475–10480 (2006).
[Crossref]

Flöry, T.

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Galvanauskas, A.

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Gao, S.

S. Gao and H. Huang, “Recent advances in micro- and nano-machining technologies,” Front. Mech. Eng. 12(1), 18–32 (2017).
[Crossref]

Gaudiuso, C.

Gecevicius, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref]

Gedvilas, M.

M. Gedvilas, S. Indrišiūnas, B. Voisiat, E. Stankevičius, A. Selskis, and G. Račiukaitis, “Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon,” Phys. Chem. Chem. Phys. 20(17), 12166–12174 (2018).
[Crossref]

Giannuzzi, G.

Glebov, I.

A. Okhrimchuk, S. Fedotov, I. Glebov, V. Sigaev, and P. Kazansky, “Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses,” Sci. Rep. 7(1), 16563–11 (2017).
[Crossref]

Guo, J.

D. Y. Tang, J. Guo, Y. F. Song, L. Li, L. M. Zhao, and D. Y. Shen, “GHz pulse train generation in fiber lasers by cavity induced modulation instability,” Opt. Fiber Technol. 20(6), 610–614 (2014).
[Crossref]

Guo, Y.

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125µm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Han, H.

J. Liu, X. Li, S. Zhang, M. Han, H. Han, and Z. Yang, “Wavelength-tunable burst-mode pulse with controllable pulse numbers and pulse intervals,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

Han, M.

J. Liu, X. Li, S. Zhang, M. Han, H. Han, and Z. Yang, “Wavelength-tunable burst-mode pulse with controllable pulse numbers and pulse intervals,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Holzwarth, R.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Hönninger, C.

G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, and I. Manek-Hönninger, “High efficiency femtosecond laser ablation with gigahertz level bursts,” J. Laser Appl. 31(2), 022205 (2019).
[Crossref]

X. Wolters, G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, and E. Mottay, “High power GHz femtosecond laser for ablation efficiency increase,” Procedia Manuf. 36, 200–207 (2019).
[Crossref]

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Hooker, S. M.

Huang, H.

S. Gao and H. Huang, “Recent advances in micro- and nano-machining technologies,” Front. Mech. Eng. 12(1), 18–32 (2017).
[Crossref]

Ilday, F. Ö.

P. Elahi, Ö. Akçaalan, C. Ertek, K. Eken, F. Ö. Ilday, and H. Kalaycoğlu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Ilday, FÖ

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Indrišiunas, S.

M. Gedvilas, S. Indrišiūnas, B. Voisiat, E. Stankevičius, A. Selskis, and G. Račiukaitis, “Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon,” Phys. Chem. Chem. Phys. 20(17), 12166–12174 (2018).
[Crossref]

Jiang, P.-P.

K.-H. Wei, P.-P. Jiang, B. Wu, T. Chen, and Y.-H. Shen, “Fiber laser pumped burst-mode operated picosecond mid-infrared laser,” Chin. Phys. B 24(2), 024217 (2015).
[Crossref]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Kaksis, E.

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Kalaycioglu, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Kalaycoglu, H.

Kazansky, P.

A. Okhrimchuk, S. Fedotov, I. Glebov, V. Sigaev, and P. Kazansky, “Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses,” Sci. Rep. 7(1), 16563–11 (2017).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref]

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Kleinert, J.

H. Matsumoto, Z. Lin, and J. Kleinert, “Ultrafast laser ablation of copper with ∼GHz bursts,” Proc. SPIE 10519, 1 (2018).
[Crossref]

Lai, X.

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125µm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Landreman, M.

Lemieux, D.

P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, and Y. Taillon, “Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source,” Proc. SPIE 7914, 791404 (2011).
[Crossref]

Li, L.

D. Y. Tang, J. Guo, Y. F. Song, L. Li, L. M. Zhao, and D. Y. Shen, “GHz pulse train generation in fiber lasers by cavity induced modulation instability,” Opt. Fiber Technol. 20(6), 610–614 (2014).
[Crossref]

Li, X.

J. Liu, X. Li, S. Zhang, M. Han, H. Han, and Z. Yang, “Wavelength-tunable burst-mode pulse with controllable pulse numbers and pulse intervals,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

Lin, Z.

H. Matsumoto, Z. Lin, and J. Kleinert, “Ultrafast laser ablation of copper with ∼GHz bursts,” Proc. SPIE 10519, 1 (2018).
[Crossref]

Liu, J.

J. Liu, X. Li, S. Zhang, M. Han, H. Han, and Z. Yang, “Wavelength-tunable burst-mode pulse with controllable pulse numbers and pulse intervals,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

Lopez, J.

G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, and I. Manek-Hönninger, “High efficiency femtosecond laser ablation with gigahertz level bursts,” J. Laser Appl. 31(2), 022205 (2019).
[Crossref]

Lugarà, P. M.

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Manek-Hönninger, I.

G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, and I. Manek-Hönninger, “High efficiency femtosecond laser ablation with gigahertz level bursts,” J. Laser Appl. 31(2), 022205 (2019).
[Crossref]

Maram, R.

Matsumoto, H.

H. Matsumoto, Z. Lin, and J. Kleinert, “Ultrafast laser ablation of copper with ∼GHz bursts,” Proc. SPIE 10519, 1 (2018).
[Crossref]

Min, S.-s.

S.-s. Min, Y. Zhao, and S. Fleming, “Repetition rate multiplication in figure-eight fibre laser with 3 dB couplers,” Opt. Commun. 277(2), 411–413 (2007).
[Crossref]

Y. Zhao, S.-s. Min, H.-c. Wang, and S. Fleming, “High-power figure-of-eight fiber laser with passive sub-ring loops for repetition rate control,” Opt. Express 14(22), 10475–10480 (2006).
[Crossref]

Mishchick, K.

G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, and I. Manek-Hönninger, “High efficiency femtosecond laser ablation with gigahertz level bursts,” J. Laser Appl. 31(2), 022205 (2019).
[Crossref]

X. Wolters, G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, and E. Mottay, “High power GHz femtosecond laser for ablation efficiency increase,” Procedia Manuf. 36, 200–207 (2019).
[Crossref]

Miyamoto, I.

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Mottay, E.

X. Wolters, G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, and E. Mottay, “High power GHz femtosecond laser for ablation efficiency increase,” Procedia Manuf. 36, 200–207 (2019).
[Crossref]

G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, and I. Manek-Hönninger, “High efficiency femtosecond laser ablation with gigahertz level bursts,” J. Laser Appl. 31(2), 022205 (2019).
[Crossref]

Nolte, S.

F. Zimmermann, S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Ultrastable bonding of glass with femtosecond laser bursts,” Appl. Opt. 52(6), 1149–1154 (2013).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

O’Keeffe, K.

Okhrimchuk, A.

A. Okhrimchuk, S. Fedotov, I. Glebov, V. Sigaev, and P. Kazansky, “Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses,” Sci. Rep. 7(1), 16563–11 (2017).
[Crossref]

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Park, S.-G.

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Pugžlys, A.

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Raciukaitis, G.

M. Gedvilas, S. Indrišiūnas, B. Voisiat, E. Stankevičius, A. Selskis, and G. Račiukaitis, “Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon,” Phys. Chem. Chem. Phys. 20(17), 12166–12174 (2018).
[Crossref]

Richter, S.

Robinson, T.

Schmidt, M.

Selskis, A.

M. Gedvilas, S. Indrišiūnas, B. Voisiat, E. Stankevičius, A. Selskis, and G. Račiukaitis, “Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon,” Phys. Chem. Chem. Phys. 20(17), 12166–12174 (2018).
[Crossref]

Shen, D. Y.

D. Y. Tang, J. Guo, Y. F. Song, L. Li, L. M. Zhao, and D. Y. Shen, “GHz pulse train generation in fiber lasers by cavity induced modulation instability,” Opt. Fiber Technol. 20(6), 610–614 (2014).
[Crossref]

Shen, Y.-H.

K.-H. Wei, P.-P. Jiang, B. Wu, T. Chen, and Y.-H. Shen, “Fiber laser pumped burst-mode operated picosecond mid-infrared laser,” Chin. Phys. B 24(2), 024217 (2015).
[Crossref]

Siders, C. W.

Siders, J. L. W.

Sigaev, V.

A. Okhrimchuk, S. Fedotov, I. Glebov, V. Sigaev, and P. Kazansky, “Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses,” Sci. Rep. 7(1), 16563–11 (2017).
[Crossref]

Song, J.

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125µm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Song, Y. F.

D. Y. Tang, J. Guo, Y. F. Song, L. Li, L. M. Zhao, and D. Y. Shen, “GHz pulse train generation in fiber lasers by cavity induced modulation instability,” Opt. Fiber Technol. 20(6), 610–614 (2014).
[Crossref]

Stankevicius, E.

M. Gedvilas, S. Indrišiūnas, B. Voisiat, E. Stankevičius, A. Selskis, and G. Račiukaitis, “Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon,” Phys. Chem. Chem. Phys. 20(17), 12166–12174 (2018).
[Crossref]

Sugioka, K.

K. Sugioka, “Progress in ultrafast laser processing and future prospects,” Nanophotonics 6(2), 393–413 (2017).
[Crossref]

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Appl. Phys. Rev. 1(4), 041303 (2014).
[Crossref]

Taillon, Y.

P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, and Y. Taillon, “Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source,” Proc. SPIE 7914, 791404 (2011).
[Crossref]

Tang, D. Y.

D. Y. Tang, J. Guo, Y. F. Song, L. Li, L. M. Zhao, and D. Y. Shen, “GHz pulse train generation in fiber lasers by cavity induced modulation instability,” Opt. Fiber Technol. 20(6), 610–614 (2014).
[Crossref]

Taylor, A. J.

Tünnermann, A.

F. Zimmermann, S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Ultrastable bonding of glass with femtosecond laser bursts,” Appl. Opt. 52(6), 1149–1154 (2013).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

van Howe, J.

Voisiat, B.

M. Gedvilas, S. Indrišiūnas, B. Voisiat, E. Stankevičius, A. Selskis, and G. Račiukaitis, “Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon,” Phys. Chem. Chem. Phys. 20(17), 12166–12174 (2018).
[Crossref]

Volpe, A.

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Wang, H.-c.

Wei, K.

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125µm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Wei, K.-H.

K.-H. Wei, P.-P. Jiang, B. Wu, T. Chen, and Y.-H. Shen, “Fiber laser pumped burst-mode operated picosecond mid-infrared laser,” Chin. Phys. B 24(2), 024217 (2015).
[Crossref]

Weiner, A. M.

Wen, R.

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125µm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Wolters, X.

X. Wolters, G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, and E. Mottay, “High power GHz femtosecond laser for ablation efficiency increase,” Procedia Manuf. 36, 200–207 (2019).
[Crossref]

Wu, B.

K.-H. Wei, P.-P. Jiang, B. Wu, T. Chen, and Y.-H. Shen, “Fiber laser pumped burst-mode operated picosecond mid-infrared laser,” Chin. Phys. B 24(2), 024217 (2015).
[Crossref]

Wu, P.

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125µm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Yang, Z.

J. Liu, X. Li, S. Zhang, M. Han, H. Han, and Z. Yang, “Wavelength-tunable burst-mode pulse with controllable pulse numbers and pulse intervals,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

Yavas, S.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Zepf, M.

Zhang, S.

J. Liu, X. Li, S. Zhang, M. Han, H. Han, and Z. Yang, “Wavelength-tunable burst-mode pulse with controllable pulse numbers and pulse intervals,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

Zhao, L. M.

D. Y. Tang, J. Guo, Y. F. Song, L. Li, L. M. Zhao, and D. Y. Shen, “GHz pulse train generation in fiber lasers by cavity induced modulation instability,” Opt. Fiber Technol. 20(6), 610–614 (2014).
[Crossref]

Zhao, Y.

S.-s. Min, Y. Zhao, and S. Fleming, “Repetition rate multiplication in figure-eight fibre laser with 3 dB couplers,” Opt. Commun. 277(2), 411–413 (2007).
[Crossref]

Y. Zhao, S.-s. Min, H.-c. Wang, and S. Fleming, “High-power figure-of-eight fiber laser with passive sub-ring loops for repetition rate control,” Opt. Express 14(22), 10475–10480 (2006).
[Crossref]

Zimmermann, F.

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Adv. Opt. Photonics (1)

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. A (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Appl. Phys. Lett. (1)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Appl. Phys. Rev. (1)

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Appl. Phys. Rev. 1(4), 041303 (2014).
[Crossref]

Chin. Phys. B (1)

K.-H. Wei, P.-P. Jiang, B. Wu, T. Chen, and Y.-H. Shen, “Fiber laser pumped burst-mode operated picosecond mid-infrared laser,” Chin. Phys. B 24(2), 024217 (2015).
[Crossref]

Front. Mech. Eng. (1)

S. Gao and H. Huang, “Recent advances in micro- and nano-machining technologies,” Front. Mech. Eng. 12(1), 18–32 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Liu, X. Li, S. Zhang, M. Han, H. Han, and Z. Yang, “Wavelength-tunable burst-mode pulse with controllable pulse numbers and pulse intervals,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–6 (2019).
[Crossref]

J. Laser Appl. (1)

G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, E. Mottay, J. Lopez, and I. Manek-Hönninger, “High efficiency femtosecond laser ablation with gigahertz level bursts,” J. Laser Appl. 31(2), 022205 (2019).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. (1)

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125µm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Light: Sci. Appl. (1)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Nanophotonics (1)

K. Sugioka, “Progress in ultrafast laser processing and future prospects,” Nanophotonics 6(2), 393–413 (2017).
[Crossref]

Nature (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Opt. Commun. (2)

S.-s. Min, Y. Zhao, and S. Fleming, “Repetition rate multiplication in figure-eight fibre laser with 3 dB couplers,” Opt. Commun. 277(2), 411–413 (2007).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

D. Y. Tang, J. Guo, Y. F. Song, L. Li, L. M. Zhao, and D. Y. Shen, “GHz pulse train generation in fiber lasers by cavity induced modulation instability,” Opt. Fiber Technol. 20(6), 610–614 (2014).
[Crossref]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

M. Gedvilas, S. Indrišiūnas, B. Voisiat, E. Stankevičius, A. Selskis, and G. Račiukaitis, “Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon,” Phys. Chem. Chem. Phys. 20(17), 12166–12174 (2018).
[Crossref]

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Proc. SPIE (2)

P. Deladurantaye, A. Cournoyer, M. Drolet, L. Desbiens, D. Lemieux, M. Briand, and Y. Taillon, “Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source,” Proc. SPIE 7914, 791404 (2011).
[Crossref]

H. Matsumoto, Z. Lin, and J. Kleinert, “Ultrafast laser ablation of copper with ∼GHz bursts,” Proc. SPIE 10519, 1 (2018).
[Crossref]

Procedia Manuf. (1)

X. Wolters, G. Bonamis, K. Mishchick, E. Audouard, C. Hönninger, and E. Mottay, “High power GHz femtosecond laser for ablation efficiency increase,” Procedia Manuf. 36, 200–207 (2019).
[Crossref]

Sci. Rep. (1)

A. Okhrimchuk, S. Fedotov, I. Glebov, V. Sigaev, and P. Kazansky, “Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses,” Sci. Rep. 7(1), 16563–11 (2017).
[Crossref]

Other (2)

National Academies of Sciences, Engineering, and Medicine, Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light (The National Academies, 2018).

T. Flöry, G. Andriukaitis, M. Barkauskas, E. Kaksis, I. Astrauskas, A. Pugžlys, A. Baltuška, R. Danielius, A. Galvanauskas, and T. Balčiūnas, “High repetition rate fs pulse burst generation using the vernier effect,” in Conference on Lasers and Electro-Optics (2017) (Optical Society of America, 2017), p. SM4I.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic setup of an active fiber loop. FC – 2x2 fiber coupler (50/50 splitting ratio), CIRC – optical circulator, DF – ytterbium doped fiber, CFBG – chirped fiber Bragg grating, LD – single-mode laser diode, AOM1 – acousto-optic modulator, PF – a segment of a passive optical fiber. IN1,2 – input ports of the fiber coupler, OUT1,2 – output ports of the fiber coupler. Time delays: T0 – between single input pulses, T1 – between a delayed replica of an input pulse and an undelayed replica of the pulse, T2 – intra-burst pulse separation of the formed bursts.
Fig. 2.
Fig. 2. Experimentally measured 2.65 GHz intra-burst PRR burst of pulses containing different number of ultrashort pulses: (a) 2, (b) 5, (c) 10, and (d) 20.
Fig. 3.
Fig. 3. Experimental representation of burst amplitude envelope shaping inside the active fiber loop: (a) decaying amplitude, (b) rising amplitude of pulses.
Fig. 4.
Fig. 4. Schematic diagram of the laser system synthesizing GHz bursts of equidistant ultrashort pulses. AOM2 – second acousto-optic modulator in the experimental setup, tCFBG – thermally tunable chirped fiber Bragg grating, CVBG – chirped volume Bragg grating.
Fig. 5.
Fig. 5. Pulse spectrum from the seed source and at the output of the system. Inset: temporal envelope of the stretched pulses.
Fig. 6.
Fig. 6. Measured autocorrelation traces of compressed pulses: single pulse regime, ultra-high PRR burst regime (20 pulses).

Metrics