Abstract

We demonstrate a technique to continuously tune center frequency and repetition rate of optical frequency combs generated in silicon microring modulators and bandwidth scale them. We utilize a drive frequency dependent, microwave power induced shifting of the microring modulator resonance. In this work, we demonstrate center frequency tunability of frequency combs generated in silicon microring modulators over a wide range (∼8nm) with fixed number of lines. We also demonstrate continuously tunable repetition rates from 7.5GHz to 15GHz. Further, we use this effect to demonstrate a proof-of-principle experiment to bandwidth scale an 8-line (20dB band) comb generated from a single ring modulator driven at 10GHz to a comb with 12 and 15 lines by cascading two and three ring modulators, respectively. This is accomplished by merging widely spaced ring modulator resonances to a common location, thus coupling light simultaneously into multiple cascaded ring modulators.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [Crossref]
  2. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  3. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [Crossref]
  4. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
    [Crossref]
  5. P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
    [Crossref]
  6. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  7. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 1–8 (2015).
    [Crossref]
  8. S. Liu, K. Wu, L. Zhou, X. Xiao, Y. Zhong, and J. Chen, “Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators,” in 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings, OSA Technical Digest (Online) (Optical Society of America, 2018), p. JW2A.56.
  9. X. Yi, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Tb/s Coherent Optical OFDM Systems Enabled by Optical Frequency Combs,” J. Lightwave Technol. 28(14), 2054–2061 (2010).
    [Crossref]
  10. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
    [Crossref]
  11. M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators,” Optica 4(7), 684–691 (2017).
    [Crossref]
  12. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref]
  13. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  14. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38(15), 2810–2813 (2013).
    [Crossref]
  15. K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators,” Opt. Express 26(8), 10744–10753 (2018).
    [Crossref]
  16. K. P. Nagarjun, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators,” Proc. SPIE 9752, 975218 (2016).
    [Crossref]
  17. S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
    [Crossref]
  18. J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation Using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
    [Crossref]
  19. X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.
  20. I. Demirtzioglou, C. Lacava, K. R. H. Bottrill, D. J. Thomson, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Frequency comb generation in a silicon ring resonator modulator,” Opt. Express 26(2), 790–796 (2018).
    [Crossref]
  21. Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
    [Crossref]
  22. X. Wu and H. K. Tsang, “Flat-top frequency comb generation with silicon microring modulator and filter,” in 2017 Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 1–2.
  23. V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37(15), 3066–3068 (2012).
    [Crossref]
  24. K. P. Nagarjun, B. S. Vikram, R. Prakash, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Scaling bandwidths of optical frequency combs generated in silicon modulators through heterodyne optical frequency locking,” in Optics InfoBase Conference Papers (Optical Society of America, 2018), Part F114-, pp. FW5B-4.
  25. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
    [Crossref]
  26. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
    [Crossref]
  27. P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
    [Crossref]
  28. K. P. Nagarjun, P. Raj, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Microwave Power Dependent Resonance Shifts in Silicon Ring Modulators for Continuous Wavelength Tuning and Bandwidth Scaling of on-Chip, Electro-Optic, Optical Frequency Combs,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1.
  29. S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
    [Crossref]
  30. H. Deng and W. Bogaerts, “Pure phase modulation based on a silicon plasma dispersion modulator,” Opt. Express 27(19), 27191–27201 (2019).
    [Crossref]

2020 (1)

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

2019 (1)

2018 (5)

K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators,” Opt. Express 26(8), 10744–10753 (2018).
[Crossref]

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation Using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

I. Demirtzioglou, C. Lacava, K. R. H. Bottrill, D. J. Thomson, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Frequency comb generation in a silicon ring resonator modulator,” Opt. Express 26(2), 790–796 (2018).
[Crossref]

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

2017 (1)

2016 (2)

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

K. P. Nagarjun, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators,” Proc. SPIE 9752, 975218 (2016).
[Crossref]

2015 (2)

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 1–8 (2015).
[Crossref]

2014 (3)

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

2013 (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38(15), 2810–2813 (2013).
[Crossref]

2012 (1)

2010 (3)

2009 (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

2005 (1)

2000 (1)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Absil, P. P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Baumann, E.

Bogaerts, W.

Bottrill, K. R. H.

Brasch, V.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Brehm, M.

Chen, D.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Chen, H.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Chen, J.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

S. Liu, K. Wu, L. Zhou, X. Xiao, Y. Zhong, and J. Chen, “Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators,” in 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings, OSA Technical Digest (Online) (Optical Society of America, 2018), p. JW2A.56.

Chen, L.

Coddington, I.

Cromer, C.

De Coster, J.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

De Heyn, P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Demirtzioglou, I.

Deng, H.

Drissi, Y.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Dubé-Demers, R.

Eliyahu, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 1–8 (2015).
[Crossref]

Fong, K. Y.

Fontaine, N. K.

Freude, W.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Ganin, D.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Giorgetta, F. R.

Guo, H.

Hänsch, T. W.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Herkommer, C.

Herr, T.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Ilchenko, V. S.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 1–8 (2015).
[Crossref]

Jeyaselvan, V.

K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators,” Opt. Express 26(8), 10744–10753 (2018).
[Crossref]

K. P. Nagarjun, B. S. Vikram, R. Prakash, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Scaling bandwidths of optical frequency combs generated in silicon modulators through heterodyne optical frequency locking,” in Optics InfoBase Conference Papers (Optical Society of America, 2018), Part F114-, pp. FW5B-4.

K. P. Nagarjun, P. Raj, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Microwave Power Dependent Resonance Shifts in Silicon Ring Modulators for Continuous Wavelength Tuning and Bandwidth Scaling of on-Chip, Electro-Optic, Optical Frequency Combs,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1.

Jung, H.

Karpov, M.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators,” Optica 4(7), 684–691 (2017).
[Crossref]

Keilmann, F.

Khanna, A.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Kippenberg, T. J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators,” Optica 4(7), 684–691 (2017).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Kofler, J.

Koos, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Kordts, A.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Krockenberger, J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Lacava, C.

LaRochelle, S.

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Leaird, D. E.

Lepage, G.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Li, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Li, M.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Liang, W.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 1–8 (2015).
[Crossref]

Lin, J.

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation Using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[Crossref]

Liu, J.

Liu, S.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

S. Liu, K. Wu, L. Zhou, X. Xiao, Y. Zhong, and J. Chen, “Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators,” in 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings, OSA Technical Digest (Online) (Optical Society of America, 2018), p. JW2A.56.

Long, C. M.

Lu, L.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Lucas, E.

Maleki, L.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 1–8 (2015).
[Crossref]

Manipatruni, S.

Marin-Palomo, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Matsko, A. B.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 1–8 (2015).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Nagarjun, K. P.

K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators,” Opt. Express 26(8), 10744–10753 (2018).
[Crossref]

K. P. Nagarjun, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators,” Proc. SPIE 9752, 975218 (2016).
[Crossref]

K. P. Nagarjun, B. S. Vikram, R. Prakash, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Scaling bandwidths of optical frequency combs generated in silicon modulators through heterodyne optical frequency locking,” in Optics InfoBase Conference Papers (Optical Society of America, 2018), Part F114-, pp. FW5B-4.

K. P. Nagarjun, P. Raj, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Microwave Power Dependent Resonance Shifts in Silicon Ring Modulators for Continuous Wavelength Tuning and Bandwidth Scaling of on-Chip, Electro-Optic, Optical Frequency Combs,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N.

Newbury, N. R.

Pantouvaki, M.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Petron, G.

Petropoulos, P.

Pfeiffer, M. H. P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators,” Optica 4(7), 684–691 (2017).
[Crossref]

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Prakash, R.

K. P. Nagarjun, B. S. Vikram, R. Prakash, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Scaling bandwidths of optical frequency combs generated in silicon modulators through heterodyne optical frequency locking,” in Optics InfoBase Conference Papers (Optical Society of America, 2018), Part F114-, pp. FW5B-4.

Raj, P.

K. P. Nagarjun, P. Raj, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Microwave Power Dependent Resonance Shifts in Silicon Ring Modulators for Continuous Wavelength Tuning and Bandwidth Scaling of on-Chip, Electro-Optic, Optical Frequency Combs,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1.

Randel, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Reed, G. T.

Richardson, D. J.

Rieker, G. B.

Rusch, L.

Rusch, L. A.

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation Using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Savchenkov, A. A.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 1–8 (2015).
[Crossref]

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
[Crossref]

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Scott, R. P.

Seidel, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 1–8 (2015).
[Crossref]

Selvaraja, S. K.

K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators,” Opt. Express 26(8), 10744–10753 (2018).
[Crossref]

K. P. Nagarjun, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators,” Proc. SPIE 9752, 975218 (2016).
[Crossref]

K. P. Nagarjun, B. S. Vikram, R. Prakash, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Scaling bandwidths of optical frequency combs generated in silicon modulators through heterodyne optical frequency locking,” in Optics InfoBase Conference Papers (Optical Society of America, 2018), Part F114-, pp. FW5B-4.

K. P. Nagarjun, P. Raj, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Microwave Power Dependent Resonance Shifts in Silicon Ring Modulators for Continuous Wavelength Tuning and Bandwidth Scaling of on-Chip, Electro-Optic, Optical Frequency Combs,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1.

Sepehrian, H.

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation Using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Shi, W.

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation Using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Sinclair, L. C.

Supradeepa, V. R.

K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators,” Opt. Express 26(8), 10744–10753 (2018).
[Crossref]

K. P. Nagarjun, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators,” Proc. SPIE 9752, 975218 (2016).
[Crossref]

V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37(15), 3066–3068 (2012).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
[Crossref]

K. P. Nagarjun, P. Raj, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Microwave Power Dependent Resonance Shifts in Silicon Ring Modulators for Continuous Wavelength Tuning and Bandwidth Scaling of on-Chip, Electro-Optic, Optical Frequency Combs,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1.

K. P. Nagarjun, B. S. Vikram, R. Prakash, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Scaling bandwidths of optical frequency combs generated in silicon modulators through heterodyne optical frequency locking,” in Optics InfoBase Conference Papers (Optical Society of America, 2018), Part F114-, pp. FW5B-4.

Swann, W.

Swann, W. C.

Sweeney, C.

Tang, H. X.

Tans, P. P.

Thomson, D. J.

Torres-Company, V.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Trocha, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Tsang, H. K.

X. Wu and H. K. Tsang, “Flat-top frequency comb generation with silicon microring modulator and filter,” in 2017 Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 1–2.

Udem, T.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Van Campenhout, J.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

van der Weide, D. W.

Van Thourhout, D.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Verheyen, P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Vikram, B. S.

K. P. Nagarjun, B. S. Vikram, R. Prakash, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Scaling bandwidths of optical frequency combs generated in silicon modulators through heterodyne optical frequency locking,” in Optics InfoBase Conference Papers (Optical Society of America, 2018), Part F114-, pp. FW5B-4.

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Wang, L.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Weimann, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Weiner, A. M.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Wolf, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Wu, K.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

S. Liu, K. Wu, L. Zhou, X. Xiao, Y. Zhong, and J. Chen, “Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators,” in 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings, OSA Technical Digest (Online) (Optical Society of America, 2018), p. JW2A.56.

Wu, R.

Wu, X.

X. Wu and H. K. Tsang, “Flat-top frequency comb generation with silicon microring modulator and filter,” in 2017 Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 1–2.

Xiao, X.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

S. Liu, K. Wu, L. Zhou, X. Xiao, Y. Zhong, and J. Chen, “Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators,” in 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings, OSA Technical Digest (Online) (Optical Society of America, 2018), p. JW2A.56.

Xiong, C.

Xu, Y.

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation Using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

Yang, Q.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Yi, X.

Yoo, S. J. B.

Yu, S.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Zervas, M.

Zhang, B.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Zhang, X.

Zhong, Y.

S. Liu, K. Wu, L. Zhou, X. Xiao, Y. Zhong, and J. Chen, “Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators,” in 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings, OSA Technical Digest (Online) (Optical Society of America, 2018), p. JW2A.56.

Zhou, G.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

Zhou, L.

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

S. Liu, K. Wu, L. Zhou, X. Xiao, Y. Zhong, and J. Chen, “Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators,” in 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings, OSA Technical Digest (Online) (Optical Society of America, 2018), p. JW2A.56.

Zolot, A. M.

IEEE J. Sel. Top. Quantum Electron. (1)

S. Liu, K. Wu, L. Zhou, L. Lu, B. Zhang, G. Zhou, and J. Chen, “Optical Frequency Comb and Nyquist Pulse Generation With Integrated Silicon Modulators,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation Using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Nat. Commun. (1)

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 1–8 (2015).
[Crossref]

Nat. Photonics (3)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Optica (3)

Phys. Rev. Lett. (1)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Proc. SPIE (2)

K. P. Nagarjun, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators,” Proc. SPIE 9752, 975218 (2016).
[Crossref]

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Science (1)

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Other (5)

S. Liu, K. Wu, L. Zhou, X. Xiao, Y. Zhong, and J. Chen, “Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators,” in 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings, OSA Technical Digest (Online) (Optical Society of America, 2018), p. JW2A.56.

K. P. Nagarjun, P. Raj, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Microwave Power Dependent Resonance Shifts in Silicon Ring Modulators for Continuous Wavelength Tuning and Bandwidth Scaling of on-Chip, Electro-Optic, Optical Frequency Combs,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1.

K. P. Nagarjun, B. S. Vikram, R. Prakash, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Scaling bandwidths of optical frequency combs generated in silicon modulators through heterodyne optical frequency locking,” in Optics InfoBase Conference Papers (Optical Society of America, 2018), Part F114-, pp. FW5B-4.

X. Wu and H. K. Tsang, “Flat-top frequency comb generation with silicon microring modulator and filter,” in 2017 Conference on Lasers and Electro-Optics (CLEO) (2017), pp. 1–2.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. a) A wide span superluminescent diode (SLED) at low power is used to characterize the effect of microwave power on a silicon microring modulator (OSA: optical spectrum analyzer). (b) Transmission spectra showing the effect of microwave power swept from 10 mW to 320 mW, in steps of 20 mW on the ring modulator resonance (c) The ring-modulator resonance undergoes a microwave power induced thermo-optic shift of ∼8 nm at 320 mW of source power (from 1547.56 nm to 1555.52 nm), inset: microscope image of the silicon microring modulator (d) deterioration in Q-factor by a factor of ∼3.
Fig. 2.
Fig. 2. Drive frequency dependence of ring resonance shift at different drive microwave powers from 5 GHz to 15 GHz.
Fig. 3.
Fig. 3. Microwave power induced thermo-optic tuning of ring modulator resonances allows for wide center frequency tuneability of several nm. Here shown with combs driven at different repetition rates (a) 7.5GHz (9 lines) (b) 10GHz (8 lines) (c) 12.5GHz (7 lines) and (d) 15GHz (6 lines). (e) The tuning range of the center frequency for the repetition rates used in (a) to (d) as a function of applied microwave power. Data is acquired in steps of 0.5dB and in each case, the comb maintains the same number of lines.
Fig. 4.
Fig. 4. (a) Technique to bandwidth scale frequency combs generated through cascading of silicon microring modulators. Here a laser at λ0 is coupled simultaneously to two ring modulators that are optically coupled to a common bus waveguide. The microring modulators are driven with microwave power to align and tune their respective resonances to a common location λ using microwave power induced thermo-optic shift. (b) Setup used for bandwidth scaled frequency comb generation by cascading two ring modulators. Two microring modulators with radius of 7.68um and 7.59um have initial resonance locations at 1549.86 nm and 1550.61 nm respectively. The SLED source is used to trace the movement of the ring modulator resonances.
Fig. 5.
Fig. 5. a) Cascaded Ring modulator bank resonances with (no RF-power) containing 4 rings with resonance locations at 1546.91 nm, 1547.92 nm, 1549.86 nm, 1550.61 nm coupled to a common bus waveguide b) RF-power at 10 GHz applied to two ring modulator resonances leading to microwave power induced thermo-optic shifts. c) The RF-power applied to the ring modulators is tuned to merge the resonances to a common location (∼1554.72 nm). d) Optimized 10 GHz repetition rate combs generated from cascading two ring modulators with 12 lines in a 20 dB band with a center frequency of 1553.82 nm. e) Cascading three ring modulators using a different set of merged resonances resulting in 15 lines in a 20 dB band with a center wavelength of 1549.05 nm.
Fig. 6.
Fig. 6. Centre frequency tuning of ∼2 nm (from 1552.58 to 1554.76 nm) in 10 GHz repetition rate optical frequency comb with 11 lines in a 20 dB band, generated by cascading two on-chip silicon microring modulators.

Metrics