Abstract

Vertical-cavity surface-emitting lasers (VCSELs) are the predominant technology for high-speed short-range interconnects in data centers. Most short-range interconnects rely on GaAs-based multi-mode VCSELs and multi-mode fiber links operating at 850 nm. Recently, GaAs-based high-speed single-mode VCSELs at wavelengths > 1 µm have been demonstrated, which increases the interconnect reach using a single-mode fiber while maintaining low energy dissipation. If a suitable platform for passive wavelength- and space-multiplexing were developed in this wavelength range, this single-mode technology could deliver the multi-Tb/s interconnect capacity that will be required in future data centers. In this work, we show the first passive Si3N4 platform in the 1-µm band (1030-1075 nm) with an equivalent loss < 0.3 dB/cm, which is compatible with the system requirements of high-capacity interconnects. The waveguide structure is optimized to achieve simultaneously single-mode operation and low bending radius, and we demonstrate a wide range of high-performance building blocks, including arrayed waveguide gratings, Mach-Zehnder interferometers, splitters and low-loss fiber interfaces. This technology could be instrumental in scaling up the capacity and reducing the footprint of VCSEL-based optical interconnects and, thanks to the broad transparency in the near-infrared and compatibility with the Yb fiber amplifier window, enabling new applications in other domains as optical microscopy and nonlinear optics.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, E. Simpanen, and T. Lengyel, “VCSEL modulation speed: status and prospects,” Proc. SPIE 10938, 1 (2019).
    [Crossref]
  2. D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, “Techno-Economic Comparison of Silicon Photonics and Multimode VCSELs,” J. Lightwave Technol. 34(2), 233–242 (2016).
    [Crossref]
  3. J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson, J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, A. N. MacInnes, E. M. Shaw, K. Balemarthy, R. Shubochkin, D. Vaidya, M. Yan, and F. Tang, “VCSEL-Based Interconnects for Current and Future Data Centers,” J. Lightwave Technol. 33(4), 727–732 (2015).
    [Crossref]
  4. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  5. M. A. Taubenblatt, “Optical interconnects for computing applications,” IEEE Photonics Conf. 2012 30(4), 183–184 (2012).
    [Crossref]
  6. A. Ghiasi, “Large data centers interconnect bottlenecks,” Opt. Express 23(3), 2085 (2015).
    [Crossref]
  7. H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24(15), 16258 (2016).
    [Crossref]
  8. S. C. J. Lee, F. Breyer, S. Randel, H. P. A. Van Den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation,” J. Opt. Netw. 7(2), 183–196 (2008).
    [Crossref]
  9. C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.
  10. A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
    [Crossref]
  11. M.-J. Li, “Novel optical fibers for data center applications,” Proc. SPIE 9772(13), 977205 (2016).
    [Crossref]
  12. E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
    [Crossref]
  13. P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, “Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects,” IEEE J. Sel. Top. Quantum Electron. 21(6), 429–435 (2015).
    [Crossref]
  14. D. L. Butler, M. J. Li, S. Li, Y. Geng, R. R. Khrapko, R. A. Modavis, V. N. Nazarov, and A. V. Koklyushkin, “Space Division Multiplexing in Short Reach Optical Interconnects,” J. Lightwave Technol. 35(4), 677–682 (2017).
    [Crossref]
  15. J. Lavrencik, S. Varughese, V. A. Thomas, and S. E. Ralph, “Scaling VCSEL-MMF Links to 1 Tb/s Using Short Wavelength Division Multiplexing,” J. Lightwave Technol. 36(18), 4138–4145 (2018).
    [Crossref]
  16. Y. Kawakita, K. Takaki, M. Funabashi, S. Imai, and A. Kasukawa, “1060 nm single-mode multi-wavelength VCSEL array with intra-cavity phase tuning layers,” in Conference Digest - IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 207–208.
  17. P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
    [Crossref]
  18. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
    [Crossref]
  19. Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si_3N_4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22(18), 21859 (2014).
    [Crossref]
  20. D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
    [Crossref]
  21. E. J. Stanton, A. Spott, M. L. Davenport, N. Volet, and J. E. Bowers, “Low-loss arrayed waveguide grating at 760  nm,” Opt. Lett. 41(8), 1785 (2016).
    [Crossref]
  22. J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” IET Optoelectron. 13(2), 62–66 (2019).
    [Crossref]
  23. J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43(14), 3200–3203 (2018).
    [Crossref]
  24. A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photonics Technol. Lett. 24(19), 1700–1703 (2012).
    [Crossref]
  25. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036 (2013).
    [Crossref]
  26. E. P. Perillo, J. E. McCracken, D. C. Fernée, J. R. Goldak, F. A. Medina, D. R. Miller, H.-C. Yeh, and A. K. Dunn, “Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser,” Biomed. Opt. Express 7(2), 324 (2016).
    [Crossref]
  27. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  28. K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for High-Speed Short-Range Optical Communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
    [Crossref]
  29. Q. Han, J. St-Yves, Y. Chen, M. Ménard, and W. Shi, “Polarization-insensitive silicon nitride arrayed waveguide grating,” Opt. Lett. 44(16), 3976 (2019).
    [Crossref]
  30. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796 (2011).
    [Crossref]
  31. P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553 (2015).
    [Crossref]
  32. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  33. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40(21), 4823 (2015).
    [Crossref]
  34. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref]
  35. K. Shang, S. Pathak, C. Qin, and S. J. B. Yoo, “Low-Loss Compact Silicon Nitride Arrayed Waveguide Gratings for Photonic Integrated Circuits,” IEEE Photonics J. 9(5), 1–5 (2017).
    [Crossref]
  36. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622 (2006).
    [Crossref]
  37. Å Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
    [Crossref]
  38. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544 (2013).
    [Crossref]
  39. W. D. Sacher, Y. Huang, G. Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33(4), 901–910 (2015).
    [Crossref]
  40. M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
    [Crossref]
  41. C. Zhang, L. R. Dalton, P. Rabiei, and W. H. Steier, “Polymer Micro-Ring Filters and Modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [Crossref]
  42. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
    [Crossref]
  43. C. van Dam, A. A. M. Staring, E. J. Jansen, J. J. M. Binsma, T. van Dongen, M. K. Smit, and B. H. Verbeek, “Loss reduction for phased-array demultiplexers using a double etch technique,” in Integrated Photonics Research (OSA, 2014), p. IMC6.
  44. Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
    [Crossref]
  45. I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
    [Crossref]
  46. Y. Yang, G. Djogo, M. Haque, P. R. Herman, and J. K. S. Poon, “Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling,” Opt. Express 25(5), 5758 (2017).
    [Crossref]
  47. M. Jahed, J. S. Gustavsson, and A. Larsson, “Precise setting of micro-cavity resonance wavelength by dry etching,” J. Vac. Sci. Technol. B 37(3), 031217 (2019).
    [Crossref]
  48. D. Kwong, Y. Zhang, A. Hosseini, Y. Liu, and R. T. Chen, “1×12 Even Fanout Using Multimode Interference Optical Beam Splitter on Silicon Nanomembrane,” Electron. Lett. 46(18), 1281 (2010).
    [Crossref]
  49. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  50. E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
    [Crossref]
  51. A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033 (2013).
    [Crossref]
  52. Z. Ye, K. Twayana, P. A. Andrekson, and V. Torres-Company, “High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics,” Opt. Express 27(24), 35719–35727 (2019).
    [Crossref]
  53. D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
    [Crossref]
  54. J. Mu, S. A. Vazquez-Cordova, M. A. Sefunc, Y. S. Yong, and S. M. Garcia-Blanco, “A Low-Loss and Broadband MMI-Based Multi/Demultiplexer in Si3N4/SiO2 Technology,” J. Lightwave Technol. 34(15), 3603–3609 (2016).
    [Crossref]
  55. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  56. S. Liu, H. Cai, C. T. DeRose, P. Davids, A. Pomerene, A. L. Starbuck, D. C. Trotter, R. Camacho, J. Urayama, and A. Lentine, “High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB,” Opt. Express 25(10), 11254 (2017).
    [Crossref]
  57. H.-W. Chen, J. D. Peters, and J. E. Bowers, “Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp,” Opt. Express 19(2), 1455 (2011).
    [Crossref]

2019 (5)

A. G. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, E. Simpanen, and T. Lengyel, “VCSEL modulation speed: status and prospects,” Proc. SPIE 10938, 1 (2019).
[Crossref]

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” IET Optoelectron. 13(2), 62–66 (2019).
[Crossref]

Q. Han, J. St-Yves, Y. Chen, M. Ménard, and W. Shi, “Polarization-insensitive silicon nitride arrayed waveguide grating,” Opt. Lett. 44(16), 3976 (2019).
[Crossref]

M. Jahed, J. S. Gustavsson, and A. Larsson, “Precise setting of micro-cavity resonance wavelength by dry etching,” J. Vac. Sci. Technol. B 37(3), 031217 (2019).
[Crossref]

Z. Ye, K. Twayana, P. A. Andrekson, and V. Torres-Company, “High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics,” Opt. Express 27(24), 35719–35727 (2019).
[Crossref]

2018 (4)

2017 (6)

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
[Crossref]

D. L. Butler, M. J. Li, S. Li, Y. Geng, R. R. Khrapko, R. A. Modavis, V. N. Nazarov, and A. V. Koklyushkin, “Space Division Multiplexing in Short Reach Optical Interconnects,” J. Lightwave Technol. 35(4), 677–682 (2017).
[Crossref]

K. Shang, S. Pathak, C. Qin, and S. J. B. Yoo, “Low-Loss Compact Silicon Nitride Arrayed Waveguide Gratings for Photonic Integrated Circuits,” IEEE Photonics J. 9(5), 1–5 (2017).
[Crossref]

Y. Yang, G. Djogo, M. Haque, P. R. Herman, and J. K. S. Poon, “Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling,” Opt. Express 25(5), 5758 (2017).
[Crossref]

S. Liu, H. Cai, C. T. DeRose, P. Davids, A. Pomerene, A. L. Starbuck, D. C. Trotter, R. Camacho, J. Urayama, and A. Lentine, “High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB,” Opt. Express 25(10), 11254 (2017).
[Crossref]

2016 (7)

J. Mu, S. A. Vazquez-Cordova, M. A. Sefunc, Y. S. Yong, and S. M. Garcia-Blanco, “A Low-Loss and Broadband MMI-Based Multi/Demultiplexer in Si3N4/SiO2 Technology,” J. Lightwave Technol. 34(15), 3603–3609 (2016).
[Crossref]

E. J. Stanton, A. Spott, M. L. Davenport, N. Volet, and J. E. Bowers, “Low-loss arrayed waveguide grating at 760  nm,” Opt. Lett. 41(8), 1785 (2016).
[Crossref]

E. P. Perillo, J. E. McCracken, D. C. Fernée, J. R. Goldak, F. A. Medina, D. R. Miller, H.-C. Yeh, and A. K. Dunn, “Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser,” Biomed. Opt. Express 7(2), 324 (2016).
[Crossref]

M.-J. Li, “Novel optical fibers for data center applications,” Proc. SPIE 9772(13), 977205 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24(15), 16258 (2016).
[Crossref]

D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, “Techno-Economic Comparison of Silicon Photonics and Multimode VCSELs,” J. Lightwave Technol. 34(2), 233–242 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

2015 (8)

J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson, J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, A. N. MacInnes, E. M. Shaw, K. Balemarthy, R. Shubochkin, D. Vaidya, M. Yan, and F. Tang, “VCSEL-Based Interconnects for Current and Future Data Centers,” J. Lightwave Technol. 33(4), 727–732 (2015).
[Crossref]

A. Ghiasi, “Large data centers interconnect bottlenecks,” Opt. Express 23(3), 2085 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, “Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects,” IEEE J. Sel. Top. Quantum Electron. 21(6), 429–435 (2015).
[Crossref]

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40(21), 4823 (2015).
[Crossref]

W. D. Sacher, Y. Huang, G. Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33(4), 901–910 (2015).
[Crossref]

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

2014 (1)

2013 (5)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544 (2013).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036 (2013).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033 (2013).
[Crossref]

2012 (3)

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photonics Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for High-Speed Short-Range Optical Communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
[Crossref]

M. A. Taubenblatt, “Optical interconnects for computing applications,” IEEE Photonics Conf. 2012 30(4), 183–184 (2012).
[Crossref]

2011 (3)

2010 (3)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

D. Kwong, Y. Zhang, A. Hosseini, Y. Liu, and R. T. Chen, “1×12 Even Fanout Using Multimode Interference Optical Beam Splitter on Silicon Nanomembrane,” Electron. Lett. 46(18), 1281 (2010).
[Crossref]

2008 (1)

2006 (2)

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622 (2006).
[Crossref]

Å Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[Crossref]

2002 (1)

1997 (2)

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

1996 (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

1991 (1)

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

Agrell, E.

Alemany, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Andreadakis, N. C.

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

Andrekson, P. A.

Azemati, S.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

Baets, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photonics Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622 (2006).
[Crossref]

Baets, R. G.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Balemarthy, K.

Baños, R.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” IET Optoelectron. 13(2), 62–66 (2019).
[Crossref]

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Bansal, L.

P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, “Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects,” IEEE J. Sel. Top. Quantum Electron. 21(6), 429–435 (2015).
[Crossref]

Barton, J. S.

Bauters, J. F.

Bengtsson, J.

Å Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[Crossref]

Bhat, R.

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

Bickham, S. R.

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

Bienstman, P.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Binsma, J. J. M.

C. van Dam, A. A. M. Staring, E. J. Jansen, J. J. M. Binsma, T. van Dongen, M. K. Smit, and B. H. Verbeek, “Loss reduction for phased-array demultiplexers using a double etch technique,” in Integrated Photonics Research (OSA, 2014), p. IMC6.

Blumenthal, D. J.

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Bogaerts, W.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Bowers, J. E.

Breyer, F.

Bru, L. A.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Butler, D. L.

Cai, H.

Camacho, R.

Cardile, P.

Carroll, L.

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Cheben, P.

Chen, A.

Chen, H.-W.

Chen, L.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

Chen, R. T.

D. Kwong, Y. Zhang, A. Hosseini, Y. Liu, and R. T. Chen, “1×12 Even Fanout Using Multimode Interference Optical Beam Splitter on Silicon Nanomembrane,” Electron. Lett. 46(18), 1281 (2010).
[Crossref]

Chen, X.

Chen, Y.

Cirera, J. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Cole, C.

Dai, D.

Dalton, L. R.

Daly, A.

Davenport, M. L.

Davids, P.

Demeester, P. M.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
[Crossref]

Denoyer, G.

Deri, R. J.

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

DeRose, C. T.

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Dhakal, A.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photonics Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

Djogo, G.

Doerr, C.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

Doménech, D.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” IET Optoelectron. 13(2), 62–66 (2019).
[Crossref]

Doménech, J. D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Domínguez, C.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” IET Optoelectron. 13(2), 62–66 (2019).
[Crossref]

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Doylend, J. K.

Dubois, B.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Dunn, A. K.

Fang, A. W.

Fang, Q.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Fedeli, J. M.

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Fédéli, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Fernández, J.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” IET Optoelectron. 13(2), 62–66 (2019).
[Crossref]

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Fernée, D. C.

Finkelstein, H.

Funabashi, M.

Y. Kawakita, K. Takaki, M. Funabashi, S. Imai, and A. Kasukawa, “1060 nm single-mode multi-wavelength VCSEL array with intra-cavity phase tuning layers,” in Conference Digest - IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 207–208.

Gaeta, A. L.

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40(21), 4823 (2015).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Garcia-Blanco, S. M.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Gargallo, B.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Gazula, D.

Geiselmann, M.

Geng, Y.

Ghadiani, B.

Ghiasi, A.

Givehchi, M.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

Goldak, J. R.

Graham, L. A.

Gruner-Nielsen, L.

P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, “Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects,” IEEE J. Sel. Top. Quantum Electron. 21(6), 429–435 (2015).
[Crossref]

Guenter, J. K.

Guo, H.

Gustavsson, J. S.

M. Jahed, J. S. Gustavsson, and A. Larsson, “Precise setting of micro-cavity resonance wavelength by dry etching,” J. Vac. Sci. Technol. B 37(3), 031217 (2019).
[Crossref]

A. G. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, E. Simpanen, and T. Lengyel, “VCSEL modulation speed: status and prospects,” Proc. SPIE 10938, 1 (2019).
[Crossref]

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
[Crossref]

P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, “Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects,” IEEE J. Sel. Top. Quantum Electron. 21(6), 429–435 (2015).
[Crossref]

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for High-Speed Short-Range Optical Communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
[Crossref]

Å Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[Crossref]

Haglund, Å

Å Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[Crossref]

Haglund, Å.

Haglund, E.

A. G. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, E. Simpanen, and T. Lengyel, “VCSEL modulation speed: status and prospects,” Proc. SPIE 10938, 1 (2019).
[Crossref]

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
[Crossref]

Haglund, E. P.

A. G. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, E. Simpanen, and T. Lengyel, “VCSEL modulation speed: status and prospects,” Proc. SPIE 10938, 1 (2019).
[Crossref]

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
[Crossref]

Halir, R.

Han, Q.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Haque, M.

Hartmann, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Hawkins, R. J.

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

Hayes, T. R.

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

Heck, M. J. R.

Heideman, R. G.

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Herkommer, C.

Herman, P. R.

Hosseini, A.

D. Kwong, Y. Zhang, A. Hosseini, Y. Liu, and R. T. Chen, “1×12 Even Fanout Using Multimode Interference Optical Beam Splitter on Silicon Nanomembrane,” Electron. Lett. 46(18), 1281 (2010).
[Crossref]

Hu, X.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Hu, Y.

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Huang, Y.

Imai, S.

Y. Kawakita, K. Takaki, M. Funabashi, S. Imai, and A. Kasukawa, “1060 nm single-mode multi-wavelength VCSEL array with intra-cavity phase tuning layers,” in Conference Digest - IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 207–208.

Jahed, M.

M. Jahed, J. S. Gustavsson, and A. Larsson, “Precise setting of micro-cavity resonance wavelength by dry etching,” J. Vac. Sci. Technol. B 37(3), 031217 (2019).
[Crossref]

Jansen, E. J.

C. van Dam, A. A. M. Staring, E. J. Jansen, J. J. M. Binsma, T. van Dongen, M. K. Smit, and B. H. Verbeek, “Loss reduction for phased-array demultiplexers using a double etch technique,” in Integrated Photonics Research (OSA, 2014), p. IMC6.

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Janz, S.

Jedrasik, P.

Å Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[Crossref]

John, D.

Johnson, R. H.

Karlsson, M.

Karout, J.

Kasukawa, A.

Y. Kawakita, K. Takaki, M. Funabashi, S. Imai, and A. Kasukawa, “1060 nm single-mode multi-wavelength VCSEL array with intra-cavity phase tuning layers,” in Conference Digest - IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 207–208.

Kawakita, Y.

Y. Kawakita, K. Takaki, M. Funabashi, S. Imai, and A. Kasukawa, “1060 nm single-mode multi-wavelength VCSEL array with intra-cavity phase tuning layers,” in Conference Digest - IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 207–208.

Khrapko, R. R.

King, J.

Kippenberg, T. J.

Kocot, C.

Koklyushkin, A. V.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Komorowska, K.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photonics Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

Koonen, A. M. J.

Kwong, D.

D. Kwong, Y. Zhang, A. Hosseini, Y. Liu, and R. T. Chen, “1×12 Even Fanout Using Multimode Interference Optical Beam Splitter on Silicon Nanomembrane,” Electron. Lett. 46(18), 1281 (2010).
[Crossref]

Lamont, M. R. E.

Landry, G. D.

Lapointe, J.

Larsson, A.

M. Jahed, J. S. Gustavsson, and A. Larsson, “Precise setting of micro-cavity resonance wavelength by dry etching,” J. Vac. Sci. Technol. B 37(3), 031217 (2019).
[Crossref]

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
[Crossref]

P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, “Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects,” IEEE J. Sel. Top. Quantum Electron. 21(6), 429–435 (2015).
[Crossref]

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for High-Speed Short-Range Optical Communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
[Crossref]

Å Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[Crossref]

Larsson, A. G.

A. G. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, E. Simpanen, and T. Lengyel, “VCSEL modulation speed: status and prospects,” Proc. SPIE 10938, 1 (2019).
[Crossref]

Lavrencik, J.

Lee, J. S.

Lee, S. C. J.

Leinse, A.

Lengyel, T.

A. G. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, E. Simpanen, and T. Lengyel, “VCSEL modulation speed: status and prospects,” Proc. SPIE 10938, 1 (2019).
[Crossref]

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

Lentine, A.

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Li, M. J.

Li, M.-J.

M.-J. Li, “Novel optical fibers for data center applications,” Proc. SPIE 9772(13), 977205 (2016).
[Crossref]

Li, S.

Liow, T.-Y.

Lipson, M.

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40(21), 4823 (2015).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Liu, J.

Liu, S.

Liu, Y.

D. Kwong, Y. Zhang, A. Hosseini, Y. Liu, and R. T. Chen, “1×12 Even Fanout Using Multimode Interference Optical Beam Splitter on Silicon Nanomembrane,” Electron. Lett. 46(18), 1281 (2010).
[Crossref]

Lo, G. Q.

W. D. Sacher, Y. Huang, G. Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33(4), 901–910 (2015).
[Crossref]

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Lo, G.-Q.

Lu, H.

Luke, K.

Luo, X.

Lyubomirsky, I.

MacInnes, A. N.

Maese-Novo, A.

Mahgerefteh, D.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Martens, D.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Mas, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Mathai, S.

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
[Crossref]

McBrien, G.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

McCracken, J. E.

Medina, F. A.

Ménard, M.

Merget, F.

Micó, G.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Mikkelsen, B.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

Miller, D. R.

Modavis, R. A.

Moerman, I.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
[Crossref]

Molina-Fernández, I.

Morais, T.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Mu, J.

Muñoz, P.

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” IET Optoelectron. 13(2), 62–66 (2019).
[Crossref]

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Nazarov, V. N.

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Nguyen, T.

Nielsen, T.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24(15), 16258 (2016).
[Crossref]

Okawachi, Y.

Ortega-Moñux, A.

Ortsiefer, M.

Painchaud, Y.

Park, S. Y.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Pastor, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Pathak, S.

K. Shang, S. Pathak, C. Qin, and S. J. B. Yoo, “Low-Loss Compact Silicon Nitride Arrayed Waveguide Gratings for Photonic Integrated Circuits,” IEEE Photonics J. 9(5), 1–5 (2017).
[Crossref]

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

Pérez, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Pérez-Galacho, D.

Perillo, E. P.

Peters, J. D.

Peyskens, F.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Pfeiffer, M. H. P.

Picard, M.-J.

Pomerene, A.

Poon, J. K. S.

Qin, C.

K. Shang, S. Pathak, C. Qin, and S. J. B. Yoo, “Low-Loss Compact Silicon Nitride Arrayed Waveguide Gratings for Photonic Integrated Circuits,” IEEE Photonics J. 9(5), 1–5 (2017).
[Crossref]

Rabiei, P.

Raja, A. S.

Ralph, S. E.

Randel, S.

Rasmussen, C.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Roelkens, G.

Romero-García, S.

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Rusli,

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Sacher, W. D.

Sánchez, A. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Scarcella, C.

Scherer, A.

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553 (2015).
[Crossref]

Sefunc, M. A.

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photonics Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Shang, K.

K. Shang, S. Pathak, C. Qin, and S. J. B. Yoo, “Low-Loss Compact Silicon Nitride Arrayed Waveguide Gratings for Photonic Integrated Circuits,” IEEE Photonics J. 9(5), 1–5 (2017).
[Crossref]

Shaw, E. M.

Shi, W.

Shubochkin, R.

Simpanen, E.

A. G. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, E. Simpanen, and T. Lengyel, “VCSEL modulation speed: status and prospects,” Proc. SPIE 10938, 1 (2019).
[Crossref]

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
[Crossref]

Smit, M. K.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

C. van Dam, A. A. M. Staring, E. J. Jansen, J. J. M. Binsma, T. van Dongen, M. K. Smit, and B. H. Verbeek, “Loss reduction for phased-array demultiplexers using a double etch technique,” in Integrated Photonics Research (OSA, 2014), p. IMC6.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

Song, J.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si_3N_4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22(18), 21859 (2014).
[Crossref]

Sorin, W. V.

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
[Crossref]

Spott, A.

Stanton, E. J.

Starbuck, A. L.

Staring, A. A. M.

C. van Dam, A. A. M. Staring, E. J. Jansen, J. J. M. Binsma, T. van Dongen, M. K. Smit, and B. H. Verbeek, “Loss reduction for phased-array demultiplexers using a double etch technique,” in Integrated Photonics Research (OSA, 2014), p. IMC6.

Steier, W. H.

Stulz, S.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

St-Yves, J.

Subramanian, A. Z.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photonics Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

Szczerba, K.

Takaki, K.

Y. Kawakita, K. Takaki, M. Funabashi, S. Imai, and A. Kasukawa, “1060 nm single-mode multi-wavelength VCSEL array with intra-cavity phase tuning layers,” in Conference Digest - IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 207–208.

Tan, M.

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

Tan, M. R.

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
[Crossref]

Tang, F.

Tatum, J.

Tatum, J. A.

Taubenblatt, M. A.

M. A. Taubenblatt, “Optical interconnects for computing applications,” IEEE Photonics Conf. 2012 30(4), 183–184 (2012).
[Crossref]

Taunay, T. F.

P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, “Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects,” IEEE J. Sel. Top. Quantum Electron. 21(6), 429–435 (2015).
[Crossref]

Thomas, V. A.

Thompson, C.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Tien, M.-C.

Torres-Company, V.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Trotter, D. C.

Tsang, H. K.

Tu, X.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Twayana, K.

Urayama, J.

Vachon, M.

Vaidya, D.

Van Daele, P. P.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
[Crossref]

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

C. van Dam, A. A. M. Staring, E. J. Jansen, J. J. M. Binsma, T. van Dongen, M. K. Smit, and B. H. Verbeek, “Loss reduction for phased-array demultiplexers using a double etch technique,” in Integrated Photonics Research (OSA, 2014), p. IMC6.

Van Den Boom, H. P. A.

van Dongen, T.

C. van Dam, A. A. M. Staring, E. J. Jansen, J. J. M. Binsma, T. van Dongen, M. K. Smit, and B. H. Verbeek, “Loss reduction for phased-array demultiplexers using a double etch technique,” in Integrated Photonics Research (OSA, 2014), p. IMC6.

Van Dorpe, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Van Thourhout, D.

Vanslembrouck, M.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Varughese, S.

Vazquez-Cordova, S. A.

Verbeek, B. H.

C. van Dam, A. A. M. Staring, E. J. Jansen, J. J. M. Binsma, T. van Dongen, M. K. Smit, and B. H. Verbeek, “Loss reduction for phased-array demultiplexers using a double etch technique,” in Integrated Photonics Research (OSA, 2014), p. IMC6.

Verheyen, P.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photonics Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

Vermeulen, D.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Volet, N.

Wang, S.

Wangüemert-Pérez, J. G.

Westbergh, P.

P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, “Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects,” IEEE J. Sel. Top. Quantum Electron. 21(6), 429–435 (2015).
[Crossref]

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for High-Speed Short-Range Optical Communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
[Crossref]

Witzens, J.

Xu, D. X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Xu, D.-X.

Xu, X. M.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

Yan, M.

Yang, Y.

Y. Yang, G. Djogo, M. Haque, P. R. Herman, and J. K. S. Poon, “Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling,” Opt. Express 25(5), 5758 (2017).
[Crossref]

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Ye, Z.

Yeh, H.-C.

Yong, Y. S.

Yoo, S. J. B.

K. Shang, S. Pathak, C. Qin, and S. J. B. Yoo, “Low-Loss Compact Silicon Nitride Arrayed Waveguide Gratings for Photonic Integrated Circuits,” IEEE Photonics J. 9(5), 1–5 (2017).
[Crossref]

Yu, M.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Zavargo-Peche, L.

Zervas, M.

Zhang, C.

Zhang, Y.

D. Kwong, Y. Zhang, A. Hosseini, Y. Liu, and R. T. Chen, “1×12 Even Fanout Using Multimode Interference Optical Beam Splitter on Silicon Nanomembrane,” Electron. Lett. 46(18), 1281 (2010).
[Crossref]

Zhao, Y.

Zhong, F.

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Appl. Phys. Lett. (1)

E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett. 59(16), 1926–1928 (1991).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (2)

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate,” Electron. Lett. 53(13), 869–871 (2017).
[Crossref]

D. Kwong, Y. Zhang, A. Hosseini, Y. Liu, and R. T. Chen, “1×12 Even Fanout Using Multimode Interference Optical Beam Splitter on Silicon Nanomembrane,” Electron. Lett. 46(18), 1281 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

Å Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, “Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects,” IEEE J. Sel. Top. Quantum Electron. 21(6), 429–435 (2015).
[Crossref]

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
[Crossref]

IEEE Photonics Conf. 2012 (1)

M. A. Taubenblatt, “Optical interconnects for computing applications,” IEEE Photonics Conf. 2012 30(4), 183–184 (2012).
[Crossref]

IEEE Photonics J. (2)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

K. Shang, S. Pathak, C. Qin, and S. J. B. Yoo, “Low-Loss Compact Silicon Nitride Arrayed Waveguide Gratings for Photonic Integrated Circuits,” IEEE Photonics J. 9(5), 1–5 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (4)

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photonics Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G. Q. Lo, and Rusli, “Thermo-Optically Tunable Silicon AWG with above 600 GHz Channel Tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

IET Optoelectron. (1)

J. Fernández, R. Baños, D. Doménech, C. Domínguez, and P. Muñoz, “Low-loss inverted taper edge coupler in silicon nitride,” IET Optoelectron. 13(2), 62–66 (2019).
[Crossref]

J. Lightwave Technol. (8)

D. L. Butler, M. J. Li, S. Li, Y. Geng, R. R. Khrapko, R. A. Modavis, V. N. Nazarov, and A. V. Koklyushkin, “Space Division Multiplexing in Short Reach Optical Interconnects,” J. Lightwave Technol. 35(4), 677–682 (2017).
[Crossref]

J. Lavrencik, S. Varughese, V. A. Thomas, and S. E. Ralph, “Scaling VCSEL-MMF Links to 1 Tb/s Using Short Wavelength Division Multiplexing,” J. Lightwave Technol. 36(18), 4138–4145 (2018).
[Crossref]

D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, “Techno-Economic Comparison of Silicon Photonics and Multimode VCSELs,” J. Lightwave Technol. 34(2), 233–242 (2016).
[Crossref]

J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson, J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, A. N. MacInnes, E. M. Shaw, K. Balemarthy, R. Shubochkin, D. Vaidya, M. Yan, and F. Tang, “VCSEL-Based Interconnects for Current and Future Data Centers,” J. Lightwave Technol. 33(4), 727–732 (2015).
[Crossref]

C. Zhang, L. R. Dalton, P. Rabiei, and W. H. Steier, “Polymer Micro-Ring Filters and Modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
[Crossref]

W. D. Sacher, Y. Huang, G. Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33(4), 901–910 (2015).
[Crossref]

J. Mu, S. A. Vazquez-Cordova, M. A. Sefunc, Y. S. Yong, and S. M. Garcia-Blanco, “A Low-Loss and Broadband MMI-Based Multi/Demultiplexer in Si3N4/SiO2 Technology,” J. Lightwave Technol. 34(15), 3603–3609 (2016).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

J. Vac. Sci. Technol. B (1)

M. Jahed, J. S. Gustavsson, and A. Larsson, “Precise setting of micro-cavity resonance wavelength by dry etching,” J. Vac. Sci. Technol. B 37(3), 031217 (2019).
[Crossref]

Nat. Photonics (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Opt. Express (13)

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036 (2013).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622 (2006).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553 (2015).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref]

A. Ghiasi, “Large data centers interconnect bottlenecks,” Opt. Express 23(3), 2085 (2015).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24(15), 16258 (2016).
[Crossref]

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si_3N_4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22(18), 21859 (2014).
[Crossref]

S. Liu, H. Cai, C. T. DeRose, P. Davids, A. Pomerene, A. L. Starbuck, D. C. Trotter, R. Camacho, J. Urayama, and A. Lentine, “High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB,” Opt. Express 25(10), 11254 (2017).
[Crossref]

H.-W. Chen, J. D. Peters, and J. E. Bowers, “Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp,” Opt. Express 19(2), 1455 (2011).
[Crossref]

Y. Yang, G. Djogo, M. Haque, P. R. Herman, and J. K. S. Poon, “Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling,” Opt. Express 25(5), 5758 (2017).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544 (2013).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033 (2013).
[Crossref]

Z. Ye, K. Twayana, P. A. Andrekson, and V. Torres-Company, “High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics,” Opt. Express 27(24), 35719–35727 (2019).
[Crossref]

Opt. Fiber Technol. (1)

A. Larsson, E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, P. A. Andrekson, W. V. Sorin, S. Mathai, M. Tan, and S. R. Bickham, “1060 nm VCSELs for long-reach optical interconnects,” Opt. Fiber Technol. 44, 36–42 (2018).
[Crossref]

Opt. Lett. (5)

Optica (1)

Proc. SPIE (2)

M.-J. Li, “Novel optical fibers for data center applications,” Proc. SPIE 9772(13), 977205 (2016).
[Crossref]

A. G. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, E. Simpanen, and T. Lengyel, “VCSEL modulation speed: status and prospects,” Proc. SPIE 10938, 1 (2019).
[Crossref]

Sensors (1)

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Other (3)

Y. Kawakita, K. Takaki, M. Funabashi, S. Imai, and A. Kasukawa, “1060 nm single-mode multi-wavelength VCSEL array with intra-cavity phase tuning layers,” in Conference Digest - IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 207–208.

C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X. M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-chip silicon photonics 100-Gb/s coherent transceiver,” in Conference on Optical Fiber Communication, Technical Digest Series (OSA, 2014), p. Th5C.1.

C. van Dam, A. A. M. Staring, E. J. Jansen, J. J. M. Binsma, T. van Dongen, M. K. Smit, and B. H. Verbeek, “Loss reduction for phased-array demultiplexers using a double etch technique,” in Integrated Photonics Research (OSA, 2014), p. IMC6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Vision of a future switch ASIC interfaced with > 1 Tb/s optical transmitters and receivers (a). The Tb/s transmitter is enabled by a monolithic multi-wavelength array of directly modulated single-mode GaAs VCSEL at 1 µm and multi-fiber cables. This vision requires the use of a low-cost, low-loss passive photonic platform for laser integration, multiplexing, and low-loss fiber coupling (b). The multi-wavelength VCSEL array is flip-chip-bonded to the low-loss Si3N4 passive platform using an array of grating couplers [7]. The thermal crosstalk in the array can be considered negligible with sufficient distance between the VCSELs [13] and the metal contacts deposited on the SiO2 cladding will help dissipate the heat of the VCSEL array (d). An on-chip multiplexer based on an arrayed waveguide grating combines the signals from individual channels in a single waveguide and couples them to the multi-fiber cable by means of a broadband inverse taper. The receiver side adopts a similar design, where the VCSEL array is replaced by a high-speed photodetector array and a transimpedance amplifier (TIA) (c). In this work, we focus on the passive platform for the transmitter.
Fig. 2.
Fig. 2. Theoretical BER versus received optical power under OOK and 4-PAM encoding, calculated for a thermal noise limited system at T=298K and Gray labelling for the 4-PAM encoding [28]. The bandwidth, responsivity of the photodiode, noise figure of receiver amplifier and the load resistance are 50GHz, 0.4A/W, 5dB and 50Ω.
Fig. 3.
Fig. 3. (a) Simulated mode distribution of x-component of the electric field for the fundamental TE mode at 1045 nm and (b) simulated bending loss for different bending radii.
Fig. 4.
Fig. 4. (a) SEM image of the gap between the microring and the bus waveguide and (b) histogram of the intrinsic quality factor of the measured ring resonators with a representative resonance in the inset.
Fig. 5.
Fig. 5. (a) Optical microscope image of the fabricated AWG. (b) SEM image of the interface between the arrayed-waveguide and the FPR in the fabricated AWG. (c) Schematic diagram of the FPR with detailed dimensions in the design. (d) Measured transmission of the AWG device, normalized to the coupling loss between the waveguide and lensed fiber.
Fig. 6.
Fig. 6. (a) Sketch of the inverse taper. (b) Measured coupling loss of the inverse taper with 380nm tip (yellow) and simulated loss for the same inverse taper (blue).
Fig. 7.
Fig. 7. (a) Cross section of grating coupler design (b) Simulation results for the optimized grating couplers designed for each channel.
Fig. 8.
Fig. 8. (a) Optical microscope image of fabricated 1 × 2 MMIs. (b) Measured total loss per MMI stage. The results for both 1 × 2 and 2 × 2 MMIs are included. (c) Optical microscope image of fabricated MZI. (d) Measured transmission of MZI normalized to the coupling loss between the lensed fiber and the chip.

Metrics