Abstract

Hologram is regarded as a key platform for large-volume data storage and information encryption. Diversity of plasmonic nanostructures makes it being a kind of vibrant hologram memory media. However, recording of amplitude, phase and polarization of light is restricted by difficulty to obtain anisotropic morphology of metal particles. Photocatalysis approach allows wide size distribution of Ag plasmonic nanoparticles after a long growth time on titania but suffers from the disadvantage that the shape of plasmonic nanostructures is mostly isotropic, which weakens optical vector sensitivity and information stability. Herein, Ag nanocubes exhibiting high polarization response ability are deposited on orderly mesoporous titania via UV photocatalysis. Recording efficiency of hologram by orthogonally linearly polarized lights is enhanced and the memorized information can be resistant to UV-erasure, both benefiting from the distal resonance of Ag nanocubes. This work delivers a guideline for long-term data storage and high-efficiency display devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3(5), e177 (2014).
    [Crossref]
  2. C. Lynch, “How do your data grow?” Nature 455(7209), 28–29 (2008).
    [Crossref]
  3. M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
    [Crossref]
  4. Q. Zhang, Z. Xia, Y. B. Cheng, and M. Gu, “High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites,” Nat. Commun. 9(1), 1183 (2018).
    [Crossref]
  5. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref]
  6. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref]
  7. Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
    [Crossref]
  8. A. Sobolewska, S. Bartkiewicz, J. Mysliwiec, and K. D. Singer, “Holographic memory devices based on a single-component phototropic liquid crystal,” J. Mater. Chem. C 2(8), 1409–1412 (2014).
    [Crossref]
  9. F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for thenext generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. 50(20), 4552–4573 (2011).
    [Crossref]
  10. T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Dual-page reproduction to increase the data transfer rate in holographic memory,” Opt. Lett. 42(12), 2287–2290 (2017).
    [Crossref]
  11. Y. Yang, L. Guan, and G. Gao, “Low-Cost, Rapidly Responsive, Controllable, and Reversible Photochromic Hydrogel for Display and Storage,” ACS Appl. Mater. Interfaces 10(16), 13975–13984 (2018).
    [Crossref]
  12. X. N. Wang, S. C. Fu, X. T. Zhang, X. Li, L. H. Kang, J. R. Wu, W. Zhang, and Y. C. Liu, “Bi-photonic reduction of anisotropic Ag nanoparticles for color-tunable hologram reconstruction,” Opt. Express 27(9), 11991–11999 (2019).
    [Crossref]
  13. L. H. Kang, H. F. Liu, S. C. Fu, X. Li, N. Li, J. R. Wu, X. N. Wang, X. T. Zhang, and J. H. Li, “Updatable colorful display of vector hologram in azo–poly(9-vinylcarbazole)–TiO2 nanocomposite films,” J. Appl. Polym. Sci. 137(14), 48537–48544 (2020).
    [Crossref]
  14. Y. Kobayashi and J. Abe, “Real-Time Dynamic Hologram of a 3D Object with Fast Photochromic Molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
    [Crossref]
  15. L. A. Frolova, A. A. Rezvanova, B. S. Lukyanov, N. A. Sanina, P. A. Troshin, and S. M. Aldoshin, “Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials,” J. Mater. Chem. C 3(44), 11675–11680 (2015).
    [Crossref]
  16. S. Y. Liu, S. C. Fu, X. T. Zhang, X. N. Wang, L. H. Kang, X. X. Han, X. Chen, J. R. Wu, and Y. C. Liu, “UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors,” Opt. Mater. Express 8(5), 1143–1153 (2018).
    [Crossref]
  17. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref]
  18. Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, “Multiple-Particle Nanoantennas for Enormous Enhancement and Polarization Control of Light Emission,” ACS Nano 3(3), 637–642 (2009).
    [Crossref]
  19. S. He, J. W. Huang, J. L. Goodsell, A. Alexander, and W. D. Wei, “Plasmonic Nickel-TiO2 Heterostructures for Visible-Light-Driven Photochemical Reactions,” Angew. Chem., Int. Ed. 58(18), 6038–6041 (2019).
    [Crossref]
  20. S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
    [Crossref]
  21. T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. 8(5), 3325–3337 (2017).
    [Crossref]
  22. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
    [Crossref]
  23. D. K. Diop, L. Simonot, N. Destouches, G. Abadias, F. Pailloux, P. Guerin, and D. Babonneau, “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates,” Adv. Mater. Interfaces 2(14), 1500134 (2015).
    [Crossref]
  24. Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
    [Crossref]
  25. G. Kawamura, “Ag-doped inorganic-organic hybrid films for rewritable hologram memory application,” J. Sol-Gel Sci. Technol. 79(2), 374–380 (2016).
    [Crossref]
  26. E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
    [Crossref]
  27. C. L. Nehl, H. W. Liao, and J. H. Hafner, “Optical Properties of Star-Shaped Gold Nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
    [Crossref]
  28. C. Lee, Y. K. Lee, Y. Park, and J. Y. Park, “Polarization Effect of Hot Electrons in Tandem-Structured Plasmonic Nanodiode,” ACS Photonics 5(9), 3499–3506 (2018).
    [Crossref]
  29. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [Crossref]
  30. B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
    [Crossref]
  31. K. Saito, I. Tanabe, and T. Tatsuma, “Site-Selective Plasmonic Etching of Silver Nanocubes,” J. Phys. Chem. Lett. 7(21), 4363–4368 (2016).
    [Crossref]
  32. A. Sousa-Castillo, M. Comesaña-Hermo, M. Pérez-Lorenzo, Z. Wang, X. T. Kong, A. Govorov, and M. Correa-Duarte, “Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures,” J. Phys. Chem. C 120(21), 11690–11699 (2016).
    [Crossref]
  33. E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2,” J. Am. Chem. Soc. 125(32), 9770–9786 (2003).
    [Crossref]
  34. K. Kim and P. W. Voorhess, “Ostwald ripening of spheroidal particles in multicomponent alloys,” Acta Mater. 152(15), 327–337 (2018).
    [Crossref]
  35. S. C. Fu, X. T. Zhang, R. Y. Han, S. Y. Sun, L. L. Wang, and Y. C. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
    [Crossref]
  36. A. Kafizas, S. Parry, A. V. Chadwick, C. J. Carmalt, and I. P. Parkin, “An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states,”,” Phys. Chem. Chem. Phys. 15(21), 8254–8263 (2013).
    [Crossref]
  37. R. D. Glover, J. M. Miller, and J. E. Hutchison, “Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment,” ACS Nano 5(11), 8950–8957 (2011).
    [Crossref]
  38. K. Matsubara and T. Tatsuma, “Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO2 Surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
    [Crossref]
  39. K. W. FreseJr and C. Chen, “Theoretical Models of Hot Carrier Effects at Metal-Semiconductor Electrodes,” J. Electrochem. Soc. 139(11), 3234–3243 (1992).
    [Crossref]
  40. K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 Films Loaded with Silver Nanoparticles:  Control of Multicolor Photochromic Behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
    [Crossref]
  41. S. Y. Liu, S. C. Fu, X. X. Han, X. N. Wang, R. Y. Ji, X. T. Zhang, and Y. C. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
    [Crossref]
  42. S. C. Fu, X. T. Zhang, Q. Han, S. Y. Liu, X. X. Han, and Y. C. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
    [Crossref]

2020 (1)

L. H. Kang, H. F. Liu, S. C. Fu, X. Li, N. Li, J. R. Wu, X. N. Wang, X. T. Zhang, and J. H. Li, “Updatable colorful display of vector hologram in azo–poly(9-vinylcarbazole)–TiO2 nanocomposite films,” J. Appl. Polym. Sci. 137(14), 48537–48544 (2020).
[Crossref]

2019 (3)

X. N. Wang, S. C. Fu, X. T. Zhang, X. Li, L. H. Kang, J. R. Wu, W. Zhang, and Y. C. Liu, “Bi-photonic reduction of anisotropic Ag nanoparticles for color-tunable hologram reconstruction,” Opt. Express 27(9), 11991–11999 (2019).
[Crossref]

S. He, J. W. Huang, J. L. Goodsell, A. Alexander, and W. D. Wei, “Plasmonic Nickel-TiO2 Heterostructures for Visible-Light-Driven Photochemical Reactions,” Angew. Chem., Int. Ed. 58(18), 6038–6041 (2019).
[Crossref]

B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
[Crossref]

2018 (5)

C. Lee, Y. K. Lee, Y. Park, and J. Y. Park, “Polarization Effect of Hot Electrons in Tandem-Structured Plasmonic Nanodiode,” ACS Photonics 5(9), 3499–3506 (2018).
[Crossref]

S. Y. Liu, S. C. Fu, X. T. Zhang, X. N. Wang, L. H. Kang, X. X. Han, X. Chen, J. R. Wu, and Y. C. Liu, “UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors,” Opt. Mater. Express 8(5), 1143–1153 (2018).
[Crossref]

Y. Yang, L. Guan, and G. Gao, “Low-Cost, Rapidly Responsive, Controllable, and Reversible Photochromic Hydrogel for Display and Storage,” ACS Appl. Mater. Interfaces 10(16), 13975–13984 (2018).
[Crossref]

Q. Zhang, Z. Xia, Y. B. Cheng, and M. Gu, “High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites,” Nat. Commun. 9(1), 1183 (2018).
[Crossref]

K. Kim and P. W. Voorhess, “Ostwald ripening of spheroidal particles in multicomponent alloys,” Acta Mater. 152(15), 327–337 (2018).
[Crossref]

2017 (4)

S. Y. Liu, S. C. Fu, X. X. Han, X. N. Wang, R. Y. Ji, X. T. Zhang, and Y. C. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Dual-page reproduction to increase the data transfer rate in holographic memory,” Opt. Lett. 42(12), 2287–2290 (2017).
[Crossref]

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. 8(5), 3325–3337 (2017).
[Crossref]

2016 (7)

G. Kawamura, “Ag-doped inorganic-organic hybrid films for rewritable hologram memory application,” J. Sol-Gel Sci. Technol. 79(2), 374–380 (2016).
[Crossref]

K. Saito, I. Tanabe, and T. Tatsuma, “Site-Selective Plasmonic Etching of Silver Nanocubes,” J. Phys. Chem. Lett. 7(21), 4363–4368 (2016).
[Crossref]

A. Sousa-Castillo, M. Comesaña-Hermo, M. Pérez-Lorenzo, Z. Wang, X. T. Kong, A. Govorov, and M. Correa-Duarte, “Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures,” J. Phys. Chem. C 120(21), 11690–11699 (2016).
[Crossref]

M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
[Crossref]

Y. Kobayashi and J. Abe, “Real-Time Dynamic Hologram of a 3D Object with Fast Photochromic Molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

S. C. Fu, X. T. Zhang, Q. Han, S. Y. Liu, X. X. Han, and Y. C. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref]

2015 (2)

L. A. Frolova, A. A. Rezvanova, B. S. Lukyanov, N. A. Sanina, P. A. Troshin, and S. M. Aldoshin, “Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials,” J. Mater. Chem. C 3(44), 11675–11680 (2015).
[Crossref]

D. K. Diop, L. Simonot, N. Destouches, G. Abadias, F. Pailloux, P. Guerin, and D. Babonneau, “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates,” Adv. Mater. Interfaces 2(14), 1500134 (2015).
[Crossref]

2014 (2)

A. Sobolewska, S. Bartkiewicz, J. Mysliwiec, and K. D. Singer, “Holographic memory devices based on a single-component phototropic liquid crystal,” J. Mater. Chem. C 2(8), 1409–1412 (2014).
[Crossref]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3(5), e177 (2014).
[Crossref]

2013 (1)

A. Kafizas, S. Parry, A. V. Chadwick, C. J. Carmalt, and I. P. Parkin, “An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states,”,” Phys. Chem. Chem. Phys. 15(21), 8254–8263 (2013).
[Crossref]

2012 (1)

2011 (2)

R. D. Glover, J. M. Miller, and J. E. Hutchison, “Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment,” ACS Nano 5(11), 8950–8957 (2011).
[Crossref]

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for thenext generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. 50(20), 4552–4573 (2011).
[Crossref]

2010 (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

2009 (3)

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, “Multiple-Particle Nanoantennas for Enormous Enhancement and Polarization Control of Light Emission,” ACS Nano 3(3), 637–642 (2009).
[Crossref]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

2008 (1)

C. Lynch, “How do your data grow?” Nature 455(7209), 28–29 (2008).
[Crossref]

2007 (1)

K. Matsubara and T. Tatsuma, “Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO2 Surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

2006 (1)

C. L. Nehl, H. W. Liao, and J. H. Hafner, “Optical Properties of Star-Shaped Gold Nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[Crossref]

2005 (1)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

2004 (1)

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 Films Loaded with Silver Nanoparticles:  Control of Multicolor Photochromic Behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref]

2003 (2)

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref]

E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2,” J. Am. Chem. Soc. 125(32), 9770–9786 (2003).
[Crossref]

1994 (1)

1992 (1)

K. W. FreseJr and C. Chen, “Theoretical Models of Hot Carrier Effects at Metal-Semiconductor Electrodes,” J. Electrochem. Soc. 139(11), 3234–3243 (1992).
[Crossref]

Abadias, G.

D. K. Diop, L. Simonot, N. Destouches, G. Abadias, F. Pailloux, P. Guerin, and D. Babonneau, “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates,” Adv. Mater. Interfaces 2(14), 1500134 (2015).
[Crossref]

Abe, J.

Y. Kobayashi and J. Abe, “Real-Time Dynamic Hologram of a 3D Object with Fast Photochromic Molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

Ajayan, P. M.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Aldoshin, S. M.

L. A. Frolova, A. A. Rezvanova, B. S. Lukyanov, N. A. Sanina, P. A. Troshin, and S. M. Aldoshin, “Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials,” J. Mater. Chem. C 3(44), 11675–11680 (2015).
[Crossref]

Alexander, A.

S. He, J. W. Huang, J. L. Goodsell, A. Alexander, and W. D. Wei, “Plasmonic Nickel-TiO2 Heterostructures for Visible-Light-Driven Photochemical Reactions,” Angew. Chem., Int. Ed. 58(18), 6038–6041 (2019).
[Crossref]

Babonneau, D.

D. K. Diop, L. Simonot, N. Destouches, G. Abadias, F. Pailloux, P. Guerin, and D. Babonneau, “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates,” Adv. Mater. Interfaces 2(14), 1500134 (2015).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Bartkiewicz, S.

A. Sobolewska, S. Bartkiewicz, J. Mysliwiec, and K. D. Singer, “Holographic memory devices based on a single-component phototropic liquid crystal,” J. Mater. Chem. C 2(8), 1409–1412 (2014).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Bruder, F. K.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for thenext generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. 50(20), 4552–4573 (2011).
[Crossref]

Cagnol, F.

E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2,” J. Am. Chem. Soc. 125(32), 9770–9786 (2003).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Cao, Y.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3(5), e177 (2014).
[Crossref]

Carmalt, C. J.

A. Kafizas, S. Parry, A. V. Chadwick, C. J. Carmalt, and I. P. Parkin, “An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states,”,” Phys. Chem. Chem. Phys. 15(21), 8254–8263 (2013).
[Crossref]

Chadwick, A. V.

A. Kafizas, S. Parry, A. V. Chadwick, C. J. Carmalt, and I. P. Parkin, “An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states,”,” Phys. Chem. Chem. Phys. 15(21), 8254–8263 (2013).
[Crossref]

Chen, C.

K. W. FreseJr and C. Chen, “Theoretical Models of Hot Carrier Effects at Metal-Semiconductor Electrodes,” J. Electrochem. Soc. 139(11), 3234–3243 (1992).
[Crossref]

Chen, X.

Cheng, Y. B.

Q. Zhang, Z. Xia, Y. B. Cheng, and M. Gu, “High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites,” Nat. Commun. 9(1), 1183 (2018).
[Crossref]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

Cobley, C.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Comesaña-Hermo, M.

A. Sousa-Castillo, M. Comesaña-Hermo, M. Pérez-Lorenzo, Z. Wang, X. T. Kong, A. Govorov, and M. Correa-Duarte, “Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures,” J. Phys. Chem. C 120(21), 11690–11699 (2016).
[Crossref]

Correa-Duarte, M.

A. Sousa-Castillo, M. Comesaña-Hermo, M. Pérez-Lorenzo, Z. Wang, X. T. Kong, A. Govorov, and M. Correa-Duarte, “Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures,” J. Phys. Chem. C 120(21), 11690–11699 (2016).
[Crossref]

Crepaldi, E. L.

E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2,” J. Am. Chem. Soc. 125(32), 9770–9786 (2003).
[Crossref]

Destouches, N.

D. K. Diop, L. Simonot, N. Destouches, G. Abadias, F. Pailloux, P. Guerin, and D. Babonneau, “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates,” Adv. Mater. Interfaces 2(14), 1500134 (2015).
[Crossref]

Diop, D. K.

D. K. Diop, L. Simonot, N. Destouches, G. Abadias, F. Pailloux, P. Guerin, and D. Babonneau, “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates,” Adv. Mater. Interfaces 2(14), 1500134 (2015).
[Crossref]

Fäcke, T.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for thenext generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. 50(20), 4552–4573 (2011).
[Crossref]

Fang, Z.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

FreseJr, K. W.

K. W. FreseJr and C. Chen, “Theoretical Models of Hot Carrier Effects at Metal-Semiconductor Electrodes,” J. Electrochem. Soc. 139(11), 3234–3243 (1992).
[Crossref]

Frolova, L. A.

L. A. Frolova, A. A. Rezvanova, B. S. Lukyanov, N. A. Sanina, P. A. Troshin, and S. M. Aldoshin, “Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials,” J. Mater. Chem. C 3(44), 11675–11680 (2015).
[Crossref]

Fu, S. C.

Fujii, T.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref]

Fujishima, A.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref]

Gao, G.

Y. Yang, L. Guan, and G. Gao, “Low-Cost, Rapidly Responsive, Controllable, and Reversible Photochromic Hydrogel for Display and Storage,” ACS Appl. Mater. Interfaces 10(16), 13975–13984 (2018).
[Crossref]

Glover, R. D.

R. D. Glover, J. M. Miller, and J. E. Hutchison, “Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment,” ACS Nano 5(11), 8950–8957 (2011).
[Crossref]

Gong, Y.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Goodsell, J. L.

S. He, J. W. Huang, J. L. Goodsell, A. Alexander, and W. D. Wei, “Plasmonic Nickel-TiO2 Heterostructures for Visible-Light-Driven Photochemical Reactions,” Angew. Chem., Int. Ed. 58(18), 6038–6041 (2019).
[Crossref]

Govorov, A.

A. Sousa-Castillo, M. Comesaña-Hermo, M. Pérez-Lorenzo, Z. Wang, X. T. Kong, A. Govorov, and M. Correa-Duarte, “Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures,” J. Phys. Chem. C 120(21), 11690–11699 (2016).
[Crossref]

Grosso, D.

E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2,” J. Am. Chem. Soc. 125(32), 9770–9786 (2003).
[Crossref]

Gu, M.

Q. Zhang, Z. Xia, Y. B. Cheng, and M. Gu, “High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites,” Nat. Commun. 9(1), 1183 (2018).
[Crossref]

M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
[Crossref]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3(5), e177 (2014).
[Crossref]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

Guan, L.

Y. Yang, L. Guan, and G. Gao, “Low-Cost, Rapidly Responsive, Controllable, and Reversible Photochromic Hydrogel for Display and Storage,” ACS Appl. Mater. Interfaces 10(16), 13975–13984 (2018).
[Crossref]

Guerin, P.

D. K. Diop, L. Simonot, N. Destouches, G. Abadias, F. Pailloux, P. Guerin, and D. Babonneau, “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates,” Adv. Mater. Interfaces 2(14), 1500134 (2015).
[Crossref]

Hafner, J. H.

C. L. Nehl, H. W. Liao, and J. H. Hafner, “Optical Properties of Star-Shaped Gold Nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[Crossref]

Hagen, R.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for thenext generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. 50(20), 4552–4573 (2011).
[Crossref]

Han, Q.

S. C. Fu, X. T. Zhang, Q. Han, S. Y. Liu, X. X. Han, and Y. C. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref]

Han, R. Y.

Han, X. X.

Haran, G.

Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, “Multiple-Particle Nanoantennas for Enormous Enhancement and Polarization Control of Light Emission,” ACS Nano 3(3), 637–642 (2009).
[Crossref]

He, S.

S. He, J. W. Huang, J. L. Goodsell, A. Alexander, and W. D. Wei, “Plasmonic Nickel-TiO2 Heterostructures for Visible-Light-Driven Photochemical Reactions,” Angew. Chem., Int. Ed. 58(18), 6038–6041 (2019).
[Crossref]

Hell, S. W.

Huang, J.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Huang, J. W.

S. He, J. W. Huang, J. L. Goodsell, A. Alexander, and W. D. Wei, “Plasmonic Nickel-TiO2 Heterostructures for Visible-Light-Driven Photochemical Reactions,” Angew. Chem., Int. Ed. 58(18), 6038–6041 (2019).
[Crossref]

Hutchison, J. E.

R. D. Glover, J. M. Miller, and J. E. Hutchison, “Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment,” ACS Nano 5(11), 8950–8957 (2011).
[Crossref]

Ishida, T.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. 8(5), 3325–3337 (2017).
[Crossref]

Ishii, N.

Ji, R. Y.

Jin, D.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Kafizas, A.

A. Kafizas, S. Parry, A. V. Chadwick, C. J. Carmalt, and I. P. Parkin, “An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states,”,” Phys. Chem. Chem. Phys. 15(21), 8254–8263 (2013).
[Crossref]

Kang, L. H.

Katano, Y.

Kawamura, G.

G. Kawamura, “Ag-doped inorganic-organic hybrid films for rewritable hologram memory application,” J. Sol-Gel Sci. Technol. 79(2), 374–380 (2016).
[Crossref]

Kim, K.

K. Kim and P. W. Voorhess, “Ostwald ripening of spheroidal particles in multicomponent alloys,” Acta Mater. 152(15), 327–337 (2018).
[Crossref]

Kinoshita, N.

Kobayashi, Y.

Y. Kobayashi and J. Abe, “Real-Time Dynamic Hologram of a 3D Object with Fast Photochromic Molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

Kong, X. T.

A. Sousa-Castillo, M. Comesaña-Hermo, M. Pérez-Lorenzo, Z. Wang, X. T. Kong, A. Govorov, and M. Correa-Duarte, “Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures,” J. Phys. Chem. C 120(21), 11690–11699 (2016).
[Crossref]

Kubota, Y.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref]

Lamon, S.

M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
[Crossref]

Lee, C.

C. Lee, Y. K. Lee, Y. Park, and J. Y. Park, “Polarization Effect of Hot Electrons in Tandem-Structured Plasmonic Nanodiode,” ACS Photonics 5(9), 3499–3506 (2018).
[Crossref]

Lee, Y. K.

C. Lee, Y. K. Lee, Y. Park, and J. Y. Park, “Polarization Effect of Hot Electrons in Tandem-Structured Plasmonic Nanodiode,” ACS Photonics 5(9), 3499–3506 (2018).
[Crossref]

Li, B.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Li, J. H.

L. H. Kang, H. F. Liu, S. C. Fu, X. Li, N. Li, J. R. Wu, X. N. Wang, X. T. Zhang, and J. H. Li, “Updatable colorful display of vector hologram in azo–poly(9-vinylcarbazole)–TiO2 nanocomposite films,” J. Appl. Polym. Sci. 137(14), 48537–48544 (2020).
[Crossref]

Li, J. X.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Li, N.

L. H. Kang, H. F. Liu, S. C. Fu, X. Li, N. Li, J. R. Wu, X. N. Wang, X. T. Zhang, and J. H. Li, “Updatable colorful display of vector hologram in azo–poly(9-vinylcarbazole)–TiO2 nanocomposite films,” J. Appl. Polym. Sci. 137(14), 48537–48544 (2020).
[Crossref]

Li, X.

L. H. Kang, H. F. Liu, S. C. Fu, X. Li, N. Li, J. R. Wu, X. N. Wang, X. T. Zhang, and J. H. Li, “Updatable colorful display of vector hologram in azo–poly(9-vinylcarbazole)–TiO2 nanocomposite films,” J. Appl. Polym. Sci. 137(14), 48537–48544 (2020).
[Crossref]

X. N. Wang, S. C. Fu, X. T. Zhang, X. Li, L. H. Kang, J. R. Wu, W. Zhang, and Y. C. Liu, “Bi-photonic reduction of anisotropic Ag nanoparticles for color-tunable hologram reconstruction,” Opt. Express 27(9), 11991–11999 (2019).
[Crossref]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3(5), e177 (2014).
[Crossref]

Li, Z.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Li, Z. P.

Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, “Multiple-Particle Nanoantennas for Enormous Enhancement and Polarization Control of Light Emission,” ACS Nano 3(3), 637–642 (2009).
[Crossref]

Liao, G. L.

B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
[Crossref]

Liao, H. W.

C. L. Nehl, H. W. Liao, and J. H. Hafner, “Optical Properties of Star-Shaped Gold Nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[Crossref]

Liu, D.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Liu, H. F.

L. H. Kang, H. F. Liu, S. C. Fu, X. Li, N. Li, J. R. Wu, X. N. Wang, X. T. Zhang, and J. H. Li, “Updatable colorful display of vector hologram in azo–poly(9-vinylcarbazole)–TiO2 nanocomposite films,” J. Appl. Polym. Sci. 137(14), 48537–48544 (2020).
[Crossref]

Liu, S. Y.

Liu, X. Y.

B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
[Crossref]

Liu, Y.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Liu, Y. C.

Liu, Z. Y.

B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
[Crossref]

Lu, Y.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Lu, Z. F.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Lukyanov, B. S.

L. A. Frolova, A. A. Rezvanova, B. S. Lukyanov, N. A. Sanina, P. A. Troshin, and S. M. Aldoshin, “Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials,” J. Mater. Chem. C 3(44), 11675–11680 (2015).
[Crossref]

Lynch, C.

C. Lynch, “How do your data grow?” Nature 455(7209), 28–29 (2008).
[Crossref]

Ma, C.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Marks, L. D.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Matsubara, K.

K. Matsubara and T. Tatsuma, “Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO2 Surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

McMahon, J. M.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Miller, J. M.

R. D. Glover, J. M. Miller, and J. E. Hutchison, “Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment,” ACS Nano 5(11), 8950–8957 (2011).
[Crossref]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Muroi, T.

Mysliwiec, J.

A. Sobolewska, S. Bartkiewicz, J. Mysliwiec, and K. D. Singer, “Holographic memory devices based on a single-component phototropic liquid crystal,” J. Mater. Chem. C 2(8), 1409–1412 (2014).
[Crossref]

Naoi, K.

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 Films Loaded with Silver Nanoparticles:  Control of Multicolor Photochromic Behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref]

Nehl, C. L.

C. L. Nehl, H. W. Liao, and J. H. Hafner, “Optical Properties of Star-Shaped Gold Nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[Crossref]

Nishi, H.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. 8(5), 3325–3337 (2017).
[Crossref]

Niwa, C.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref]

Ohko, Y.

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 Films Loaded with Silver Nanoparticles:  Control of Multicolor Photochromic Behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref]

Pailloux, F.

D. K. Diop, L. Simonot, N. Destouches, G. Abadias, F. Pailloux, P. Guerin, and D. Babonneau, “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates,” Adv. Mater. Interfaces 2(14), 1500134 (2015).
[Crossref]

Park, J. Y.

C. Lee, Y. K. Lee, Y. Park, and J. Y. Park, “Polarization Effect of Hot Electrons in Tandem-Structured Plasmonic Nanodiode,” ACS Photonics 5(9), 3499–3506 (2018).
[Crossref]

Park, Y.

C. Lee, Y. K. Lee, Y. Park, and J. Y. Park, “Polarization Effect of Hot Electrons in Tandem-Structured Plasmonic Nanodiode,” ACS Photonics 5(9), 3499–3506 (2018).
[Crossref]

Parkin, I. P.

A. Kafizas, S. Parry, A. V. Chadwick, C. J. Carmalt, and I. P. Parkin, “An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states,”,” Phys. Chem. Chem. Phys. 15(21), 8254–8263 (2013).
[Crossref]

Parry, S.

A. Kafizas, S. Parry, A. V. Chadwick, C. J. Carmalt, and I. P. Parkin, “An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states,”,” Phys. Chem. Chem. Phys. 15(21), 8254–8263 (2013).
[Crossref]

Pérez-Lorenzo, M.

A. Sousa-Castillo, M. Comesaña-Hermo, M. Pérez-Lorenzo, Z. Wang, X. T. Kong, A. Govorov, and M. Correa-Duarte, “Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures,” J. Phys. Chem. C 120(21), 11690–11699 (2016).
[Crossref]

Piper, J. A.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Qiao, Q.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Rezvanova, A. A.

L. A. Frolova, A. A. Rezvanova, B. S. Lukyanov, N. A. Sanina, P. A. Troshin, and S. M. Aldoshin, “Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials,” J. Mater. Chem. C 3(44), 11675–11680 (2015).
[Crossref]

Ribot, F.

E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2,” J. Am. Chem. Soc. 125(32), 9770–9786 (2003).
[Crossref]

Ringe, E.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Rölle, T.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for thenext generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. 50(20), 4552–4573 (2011).
[Crossref]

Saito, K.

K. Saito, I. Tanabe, and T. Tatsuma, “Site-Selective Plasmonic Etching of Silver Nanocubes,” J. Phys. Chem. Lett. 7(21), 4363–4368 (2016).
[Crossref]

Sanchez, C.

E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2,” J. Am. Chem. Soc. 125(32), 9770–9786 (2003).
[Crossref]

Sanina, N. A.

L. A. Frolova, A. A. Rezvanova, B. S. Lukyanov, N. A. Sanina, P. A. Troshin, and S. M. Aldoshin, “Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials,” J. Mater. Chem. C 3(44), 11675–11680 (2015).
[Crossref]

Schatz, G. C.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Shegai, T.

Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, “Multiple-Particle Nanoantennas for Enormous Enhancement and Polarization Control of Light Emission,” ACS Nano 3(3), 637–642 (2009).
[Crossref]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Shi, T. L.

B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
[Crossref]

Simonot, L.

D. K. Diop, L. Simonot, N. Destouches, G. Abadias, F. Pailloux, P. Guerin, and D. Babonneau, “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates,” Adv. Mater. Interfaces 2(14), 1500134 (2015).
[Crossref]

Singer, K. D.

A. Sobolewska, S. Bartkiewicz, J. Mysliwiec, and K. D. Singer, “Holographic memory devices based on a single-component phototropic liquid crystal,” J. Mater. Chem. C 2(8), 1409–1412 (2014).
[Crossref]

Sobolewska, A.

A. Sobolewska, S. Bartkiewicz, J. Mysliwiec, and K. D. Singer, “Holographic memory devices based on a single-component phototropic liquid crystal,” J. Mater. Chem. C 2(8), 1409–1412 (2014).
[Crossref]

Sohn, K.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Soler-Illia, G.

E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2,” J. Am. Chem. Soc. 125(32), 9770–9786 (2003).
[Crossref]

Sousa-Castillo, A.

A. Sousa-Castillo, M. Comesaña-Hermo, M. Pérez-Lorenzo, Z. Wang, X. T. Kong, A. Govorov, and M. Correa-Duarte, “Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures,” J. Phys. Chem. C 120(21), 11690–11699 (2016).
[Crossref]

Sun, B.

B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
[Crossref]

Sun, S. Y.

Tan, X. H.

B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
[Crossref]

Tanabe, I.

K. Saito, I. Tanabe, and T. Tatsuma, “Site-Selective Plasmonic Etching of Silver Nanocubes,” J. Phys. Chem. Lett. 7(21), 4363–4368 (2016).
[Crossref]

Tatsuma, T.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. 8(5), 3325–3337 (2017).
[Crossref]

K. Saito, I. Tanabe, and T. Tatsuma, “Site-Selective Plasmonic Etching of Silver Nanocubes,” J. Phys. Chem. Lett. 7(21), 4363–4368 (2016).
[Crossref]

K. Matsubara and T. Tatsuma, “Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO2 Surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 Films Loaded with Silver Nanoparticles:  Control of Multicolor Photochromic Behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref]

Troshin, P. A.

L. A. Frolova, A. A. Rezvanova, B. S. Lukyanov, N. A. Sanina, P. A. Troshin, and S. M. Aldoshin, “Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials,” J. Mater. Chem. C 3(44), 11675–11680 (2015).
[Crossref]

Van Duyne, R. P.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Vidal, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Voorhess, P. W.

K. Kim and P. W. Voorhess, “Ostwald ripening of spheroidal particles in multicomponent alloys,” Acta Mater. 152(15), 327–337 (2018).
[Crossref]

Wang, F.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Wang, L. L.

S. C. Fu, X. T. Zhang, R. Y. Han, S. Y. Sun, L. L. Wang, and Y. C. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[Crossref]

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Wang, X. N.

Wang, Z.

A. Sousa-Castillo, M. Comesaña-Hermo, M. Pérez-Lorenzo, Z. Wang, X. T. Kong, A. Govorov, and M. Correa-Duarte, “Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures,” J. Phys. Chem. C 120(21), 11690–11699 (2016).
[Crossref]

Wang, Z. Y.

B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
[Crossref]

Wei, W. D.

S. He, J. W. Huang, J. L. Goodsell, A. Alexander, and W. D. Wei, “Plasmonic Nickel-TiO2 Heterostructures for Visible-Light-Driven Photochemical Reactions,” Angew. Chem., Int. Ed. 58(18), 6038–6041 (2019).
[Crossref]

Weiser, M. S.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for thenext generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. 50(20), 4552–4573 (2011).
[Crossref]

Wen, S.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Wichmann, J.

Wu, J. R.

Xi, P.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Xia, Y.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

Xia, Z.

Q. Zhang, Z. Xia, Y. B. Cheng, and M. Gu, “High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites,” Nat. Commun. 9(1), 1183 (2018).
[Crossref]

Xu, H. X.

Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, “Multiple-Particle Nanoantennas for Enormous Enhancement and Polarization Control of Light Emission,” ACS Nano 3(3), 637–642 (2009).
[Crossref]

Yang, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Yang, Y.

Y. Yang, L. Guan, and G. Gao, “Low-Cost, Rapidly Responsive, Controllable, and Reversible Photochromic Hydrogel for Display and Storage,” ACS Appl. Mater. Interfaces 10(16), 13975–13984 (2018).
[Crossref]

Zhang, Q.

Q. Zhang, Z. Xia, Y. B. Cheng, and M. Gu, “High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites,” Nat. Commun. 9(1), 1183 (2018).
[Crossref]

M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
[Crossref]

Zhang, W.

Zhang, X. T.

L. H. Kang, H. F. Liu, S. C. Fu, X. Li, N. Li, J. R. Wu, X. N. Wang, X. T. Zhang, and J. H. Li, “Updatable colorful display of vector hologram in azo–poly(9-vinylcarbazole)–TiO2 nanocomposite films,” J. Appl. Polym. Sci. 137(14), 48537–48544 (2020).
[Crossref]

X. N. Wang, S. C. Fu, X. T. Zhang, X. Li, L. H. Kang, J. R. Wu, W. Zhang, and Y. C. Liu, “Bi-photonic reduction of anisotropic Ag nanoparticles for color-tunable hologram reconstruction,” Opt. Express 27(9), 11991–11999 (2019).
[Crossref]

S. Y. Liu, S. C. Fu, X. T. Zhang, X. N. Wang, L. H. Kang, X. X. Han, X. Chen, J. R. Wu, and Y. C. Liu, “UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors,” Opt. Mater. Express 8(5), 1143–1153 (2018).
[Crossref]

S. Y. Liu, S. C. Fu, X. X. Han, X. N. Wang, R. Y. Ji, X. T. Zhang, and Y. C. Liu, “Nonvolatile plasmonic holographic memory based on photo-driven ion migration,” Appl. Opt. 56(24), 6942–6948 (2017).
[Crossref]

S. C. Fu, X. T. Zhang, Q. Han, S. Y. Liu, X. X. Han, and Y. C. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref]

S. C. Fu, X. T. Zhang, R. Y. Han, S. Y. Sun, L. L. Wang, and Y. C. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[Crossref]

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Zhao, J.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Zheng, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Zhou, J.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Zhou, J. X.

B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
[Crossref]

Zhou, Z.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Zhu, X. F.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

Zu, S.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Yang, L. Guan, and G. Gao, “Low-Cost, Rapidly Responsive, Controllable, and Reversible Photochromic Hydrogel for Display and Storage,” ACS Appl. Mater. Interfaces 10(16), 13975–13984 (2018).
[Crossref]

ACS Nano (2)

R. D. Glover, J. M. Miller, and J. E. Hutchison, “Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment,” ACS Nano 5(11), 8950–8957 (2011).
[Crossref]

Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, “Multiple-Particle Nanoantennas for Enormous Enhancement and Polarization Control of Light Emission,” ACS Nano 3(3), 637–642 (2009).
[Crossref]

ACS Photonics (1)

C. Lee, Y. K. Lee, Y. Park, and J. Y. Park, “Polarization Effect of Hot Electrons in Tandem-Structured Plasmonic Nanodiode,” ACS Photonics 5(9), 3499–3506 (2018).
[Crossref]

Acta Mater. (1)

K. Kim and P. W. Voorhess, “Ostwald ripening of spheroidal particles in multicomponent alloys,” Acta Mater. 152(15), 327–337 (2018).
[Crossref]

Adv. Funct. Mater. (1)

B. Sun, Z. Y. Wang, Z. Y. Liu, X. H. Tan, X. Y. Liu, T. L. Shi, J. X. Zhou, and G. L. Liao, “Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS2 Photodetector,” Adv. Funct. Mater. 29(26), 1900541 (2019).
[Crossref]

Adv. Mater. (1)

K. Matsubara and T. Tatsuma, “Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single-crystalline TiO2 Surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

Adv. Mater. Interfaces (1)

D. K. Diop, L. Simonot, N. Destouches, G. Abadias, F. Pailloux, P. Guerin, and D. Babonneau, “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates,” Adv. Mater. Interfaces 2(14), 1500134 (2015).
[Crossref]

Adv. Opt. Mater. (2)

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Y. Kobayashi and J. Abe, “Real-Time Dynamic Hologram of a 3D Object with Fast Photochromic Molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

Angew. Chem., Int. Ed. (2)

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for thenext generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. 50(20), 4552–4573 (2011).
[Crossref]

S. He, J. W. Huang, J. L. Goodsell, A. Alexander, and W. D. Wei, “Plasmonic Nickel-TiO2 Heterostructures for Visible-Light-Driven Photochemical Reactions,” Angew. Chem., Int. Ed. 58(18), 6038–6041 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Chem. Sci. (1)

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. 8(5), 3325–3337 (2017).
[Crossref]

J. Am. Chem. Soc. (2)

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 Films Loaded with Silver Nanoparticles:  Control of Multicolor Photochromic Behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref]

E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2,” J. Am. Chem. Soc. 125(32), 9770–9786 (2003).
[Crossref]

J. Appl. Polym. Sci. (1)

L. H. Kang, H. F. Liu, S. C. Fu, X. Li, N. Li, J. R. Wu, X. N. Wang, X. T. Zhang, and J. H. Li, “Updatable colorful display of vector hologram in azo–poly(9-vinylcarbazole)–TiO2 nanocomposite films,” J. Appl. Polym. Sci. 137(14), 48537–48544 (2020).
[Crossref]

J. Electrochem. Soc. (1)

K. W. FreseJr and C. Chen, “Theoretical Models of Hot Carrier Effects at Metal-Semiconductor Electrodes,” J. Electrochem. Soc. 139(11), 3234–3243 (1992).
[Crossref]

J. Mater. Chem. C (2)

A. Sobolewska, S. Bartkiewicz, J. Mysliwiec, and K. D. Singer, “Holographic memory devices based on a single-component phototropic liquid crystal,” J. Mater. Chem. C 2(8), 1409–1412 (2014).
[Crossref]

L. A. Frolova, A. A. Rezvanova, B. S. Lukyanov, N. A. Sanina, P. A. Troshin, and S. M. Aldoshin, “Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials,” J. Mater. Chem. C 3(44), 11675–11680 (2015).
[Crossref]

J. Phys. Chem. C (2)

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[Crossref]

A. Sousa-Castillo, M. Comesaña-Hermo, M. Pérez-Lorenzo, Z. Wang, X. T. Kong, A. Govorov, and M. Correa-Duarte, “Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures,” J. Phys. Chem. C 120(21), 11690–11699 (2016).
[Crossref]

J. Phys. Chem. Lett. (1)

K. Saito, I. Tanabe, and T. Tatsuma, “Site-Selective Plasmonic Etching of Silver Nanocubes,” J. Phys. Chem. Lett. 7(21), 4363–4368 (2016).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

G. Kawamura, “Ag-doped inorganic-organic hybrid films for rewritable hologram memory application,” J. Sol-Gel Sci. Technol. 79(2), 374–380 (2016).
[Crossref]

Light: Sci. Appl. (1)

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3(5), e177 (2014).
[Crossref]

Nano Lett. (2)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

C. L. Nehl, H. W. Liao, and J. H. Hafner, “Optical Properties of Star-Shaped Gold Nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[Crossref]

Nat. Commun. (1)

Q. Zhang, Z. Xia, Y. B. Cheng, and M. Gu, “High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites,” Nat. Commun. 9(1), 1183 (2018).
[Crossref]

Nat. Mater. (2)

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Nat. Rev. Mater. (1)

M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
[Crossref]

Nature (3)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

C. Lynch, “How do your data grow?” Nature 455(7209), 28–29 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

A. Kafizas, S. Parry, A. V. Chadwick, C. J. Carmalt, and I. P. Parkin, “An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states,”,” Phys. Chem. Chem. Phys. 15(21), 8254–8263 (2013).
[Crossref]

Sci. Rep. (1)

S. C. Fu, X. T. Zhang, Q. Han, S. Y. Liu, X. X. Han, and Y. C. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Fabrication process of Ag/TiO2 nanocomposite films. (a) Preparation of initial solutions. (b) Orderly mesoporous TiO2 films were prepared on glass substrates by a dip-coating technique. (c) Process of evaporation-induced self-assembly and heat treatment to remove the polymer. (d) Deposition of Ag NPs by UV-reduction.
Fig. 2.
Fig. 2. Optical setup for (a) holographic recording and (b) photoinduced birefringence in Ag/TiO2 nanocomposite films (M, mirror; BS, beam splitter; RP, retardation plate; L, lens; BE, beam expander; P, polarizer; PD, photodiode).
Fig. 3.
Fig. 3. (a-c) Top-view of SEM images of orderly mesoporous TiO2 films of T-400, T-450 and T-500. (d-f) Size distribution graphs of pores and cumulative percentage for T-400, T-450 and T-500. (g-i) Top-view of SEM images of Ag/TiO2 nanocomposite films of S-400, S-450 and S-500.
Fig. 4.
Fig. 4. (a) Schematic diagram of Ag NCs growth by UV photocatalytic. (b) Size distribution graphs of Ag NCs for S-450 (c) UV-Vis absorption spectra for S-400, S-450 and S-500.
Fig. 5.
Fig. 5. (a) In-situ absorption spectra of S-450 irradiated by blue-violet light, the inset is the temporal evolution of absorption value at 405 nm. (b) Schematic images of distal hot electrons transfer and Ag+ ion migration for Ag NCs. In-situ SEM images of Ag NCs on TiO2 (c) before and (d,e) after irradiation at 405 nm. (f) Simulated optical near-field map in the x-z plane of Ag NC on the surface of TiO2 under the 405 nm light irradiation.
Fig. 6.
Fig. 6. Transmittance of the probing light versus exposure time for S-400, S-450 and S-500.
Fig. 7.
Fig. 7. First-order diffraction efficiency of s-p holographic gratings under (a) alternated Vis/UV irradiation and (b) simultaneous irradiation of the 405 nm and 360 nm lights. (c) First-order diffraction efficiency of S-450 irradiated by the 405 nm-light with the powers of 1 mW, 3 mW, 5 mW, 10 mW and 15 mW under UV interference.
Fig. 8.
Fig. 8. Reconstruction of the orthogonally-linearly-polarized-light-recorded “star” hologram for (a) S-400 (b) S-450 and (c) S-500.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( t ) = [ A ( ) A ( 0 ) ] ( 1 e t / τ ) + A ( 0 )
Δ A = A ( ) A ( 0 ) A ( 0 )
Δ n = λ π d arcsin ( T )

Metrics